

Seven Essential Properties of Absolute Value

(Part 3)

Theorem 4: If x is any real number and a is a positive real number, then $|x|>a$ if and only if either $x>a$ or $x<-a$.

Proof: Suppose that x is any real number and a is a positive real number.
Suppose that $|x|>a$. Either $x \geq 0$ or $x<0$.
Case 1: Suppose that $x \geq 0$. Hence, $|x| \stackrel{\text { D1 }}{\cong} x$. So, $x>a$, by substitution. Thus, either $x>a$ or $x<-a$.
Case 2: Suppose that $x<0$. Hence, $|x| \stackrel{\text { D1 }}{\stackrel{m}{=}}-x$. So, $-x>a$, by substitution. Thus, $x<-a$. Hence, either $x>a$ or $x<-a$.
In either case, either $x>a$ or $x<-a$. Consequently, if $|x|>a$, then either $x>a$ or $x<-a$..
Suppose that either $x>a$ or $x<-a$. Either $x \geq 0$ or $x<0$.
Case 1: Suppose that $x>a$. Hence, $x>0$, since $a>0$. So, $|x| \stackrel{\text { D1 }}{=} x$. Thus, $|x|>a$, by substitution.
Case 2: Suppose that $x<-a$. Hence, $-x>a$. So, $-x>0$, since $a>0$. Thus, $x<0$. Hence, $|x| \stackrel{\text { D1 }}{=}-x$. So, $|x|>a$, by substitution.
In either case, $|x|>a$. Consequently, if either $x>a$ or $x<-a$, then $|x|>a$.
Therefore, $|x|>a$ if and only if either $x>a$ or $x<-a$.

Theorem 5: If a and b are any real numbers, then $|a-b|=|b-a|$.
Proof: Suppose that a and b are any real numbers. Either $a-b \geq 0$ or $a-b<0$.
Case 1: Suppose that $a-b \geq 0$. Hence, $-(b-a) \geq 0$. So
$|a-b| \stackrel{\text { ल }}{=} a-b=-(b-a) \stackrel{\text { m }}{=}|b-a|$.
Case 2: Suppose that $a-b<0$. Hence, $b-a>0$. So,
$|a-b| \stackrel{\text { D1 }}{=}-(a-b)=b-a \stackrel{\text { D1 }}{=}|b-a|$.
In either case, $|a-b|=|b-a|$.
Therefore, If a and b are any real numbers, then $|a-b|=|b-a|$.
"Only he who never plays, never loses."

