

Seven Essential Properties of Absolute Value

(Part 4)

Theorem 6: If a and b are any real numbers, then $|a| \cdot|b|=|a \cdot b|$.
Proof: Suppose that a and b are any real numbers. Exactly one of the four following possibilities holds: i. $a \geq 0$ and $b \geq 0$; ii. $a<0$ and $b<0$; iii. $a \geq 0$ and $b<0$; iv. $a<0$ and $b \geq 0$.

Case 1: Suppose that $a \geq 0$ and $b \geq 0$. Hence, $|a| \stackrel{\text { D1 }}{\stackrel{\cong}{=}} a,|b| \stackrel{\text { D1 }}{\cong}$ m, and $a b \geq 0$.
So, $|a| \cdot|b|=a b \stackrel{\text { D1 }}{\stackrel{N}{=}}|a \cdot b|$.
Case 2: Suppose that $a<0$ and $b<0$. Hence, $|a| \stackrel{\text { D1 }}{\cong}-a,|b| \stackrel{\text { D1 }}{\cong}-b$, and
$a b>0$. So, $a b \geq 0$. Thus, $|a| \cdot|b|=(-a)(-b)=a b \stackrel{\text { D1 }}{\cong}|a \cdot b|$.
Case 3: Suppose that $a \geq 0$ and $b<0$. Hence, either $a=0$ or $a>0$.
Case 3a: Suppose that $a=0$. Hence, $|a| \stackrel{\mathrm{D} 1}{=} a,|b| \stackrel{\mathrm{D} 1}{=}-b$, and $a b=0$. So, $|a| \cdot|b|=a(-b)=0(-b)=0=a b \cong|a \cdot b|$.
Case 3b: Suppose that $a>0$. Hence, $|a| \stackrel{\text { D1 }}{\stackrel{\text { D }}{=}} a,|b| \stackrel{\text { D1 }}{\cong}-b$, and $a b<0$. So, $|a| \cdot|b|=a(-b)=-(a b) \stackrel{\text { D1 }}{=}|a \cdot b|$.
In either case, $|a| \cdot|b|=|a \cdot b|$.
Case 4: Suppose that $a<0$ and $b \geq 0$. Hence, either $b=0$ or $b>0$.
Case 4a: Suppose that $b=0$. Hence, $|a| \stackrel{\text { D1 }}{=}-a,|b| \stackrel{\text { D1 }}{=} b$, and $a b=0$. So, $|a| \cdot|b|=(-a) b=(-a) 0 \underset{\text { D1 }}{=0}=a b \stackrel{\text { D }}{\stackrel{ }{\rightleftharpoons}} \underset{\mathrm{D} 1}{\mid a} \cdot b \mid$.
Case 4b: Suppose that $b>0$. Hence, $|a| \stackrel{\text { D1 }}{\stackrel{D 1}{=}}-a,|b| \stackrel{\text { D1 }}{=} b$, and $a b<0$. So, $|a| \cdot|b|=(-a) b=-(a b) \stackrel{\text { D1 }}{=}|a \cdot b|$.
In either case, $|a| \cdot|b|=|a \cdot b|$.
In all four cases, $|a| \cdot|b|=|a \cdot b|$.
Therefore, If a and b are any real numbers, then $|a| \cdot|b|=|a \cdot b|$.

Theorem 7: For every real number x,

$$
-|x| \leq x \leq|x| .
$$

Proof: Suppose that x is a real number. Hence, either $x \geq 0$ or $x<0$.
Case 1: Suppose that $x \geq 0$. Hence, $-x \leq 0$ and $|x| \stackrel{\text { D1 }}{=} x$. So, $-x \leq 0 \leq x$. Thus, $-x \leq x \leq x$. Hence, $-|x| \leq x \leq|x|$, by substitution.
Case 2: Suppose that $x<0$. Hence, $-x>0$ and $|x| \stackrel{\text { D1 }}{\cong}-x$. So, $x<0<-x$. Thus, $x \leq x \leq-x$. Hence, since $-|x|=x$, $-|x| \leq x \leq|x|$, by substitution.
In either case, $-|x| \leq x \leq|x|$.

Theorem 8 (The Triangle Inequality): If a and b are any real numbers, then

$$
|a+b| \leq|a|+|b| .
$$

Proof: Suppose that a and b are any real numbers. Hence, $-|a| \leq a \leq|a|$ and $-|b| \leq b \leq|b|$, by Theorem 7. So, $-|a|-|b| \leq a+b \leq|a|+|b|$. Thus, $-(|a|+|b|) \leq a+b \leq(|a|+|b|)$. Therefore, $|a+b| \leq|a|+|b|$, by Theorem 2 .

