The Weekly Rigor

No. 158

"A mathematician is a machine for turning coffee into theorems."

July 1, 2017

Seven Essential Properties of Absolute Value (Part 4)

Theorem 6: If *a* and *b* are any real numbers, then $|a| \cdot |b| = |a \cdot b|$.

Proof: Suppose that *a* and *b* are any real numbers. Exactly one of the four following possibilities holds: i. $a \ge 0$ and $b \ge 0$; ii. a < 0 and b < 0; iii. $a \ge 0$ and b < 0; iv. a < 0 and $b \ge 0$.

D1 D1 <u>Case 1:</u> Suppose that $a \ge 0$ and $b \ge 0$. Hence, $|a| \stackrel{c}{=} a$, $|b| \stackrel{c}{=} b$, and $ab \ge 0$. So, $|a| \cdot |b| = ab \stackrel{D1}{\cong} |a \cdot b|$. D1 <u>Case 2:</u> Suppose that a < 0 and b < 0. Hence, $|a| \stackrel{\text{charge}}{=} -a$, $|b| \stackrel{\text{charge}}{=} -b$, and ab > 0. So, $ab \ge 0$. Thus, $|a| \cdot |b| = (-a)(-b) = ab \cong |a \cdot b|$. <u>Case 3:</u> Suppose that $a \ge 0$ and b < 0. Hence, either a = 0 or a > 0. D1 D1 <u>Case 3a:</u> Suppose that a = 0. Hence, $|a| \stackrel{\frown}{=} a$, $|b| \stackrel{\frown}{=} -b$, and ab = 0. So, $|a| \cdot |b| = a(-b) = 0(-b) = 0$ D1 ab = 0D1 $a \cdot b|$. <u>Case 3b:</u> Suppose that a > 0. Hence, $|a| \stackrel{\text{case 3b:}}{=} a$, $|b| \stackrel{\text{case 3b:}}{=} -b$, and ab < 0. So, $|a| \cdot |b| = a(-b) = -(ab) \stackrel{\text{ch}}{=} |a \cdot b|$. In either case, $|a| \cdot |b| = |a \cdot b|$. <u>Case 4:</u> Suppose that a < 0 and $b \ge 0$. Hence, either b = 0 or b > 0. <u>Case 4a:</u> Suppose that b = 0. Hence, $|a| \stackrel{\text{dif}}{=} -a$, $|b| \stackrel{\text{dif}}{=} b$, and ab = 0. So, $|a| \cdot |b| = (-a)b = (-a)0 = 0 = ab \stackrel{\frown}{=} |a \cdot b|$. D1 <u>Case 4b:</u> Suppose that b > 0. Hence, $|a| \stackrel{\sim}{\cong} -a$, $|b| \stackrel{\sim}{\cong} b$, and ab < 0. So, $|a| \cdot |b| = (-a)b = -(ab) \stackrel{c}{=} |a \cdot b|$. In either case, $|a| \cdot |b| = |a \cdot b|$. In all four cases, $|a| \cdot |b| = |a \cdot b|$.

Therefore, If *a* and *b* are any real numbers, then $|a| \cdot |b| = |a \cdot b|$.

Theorem 7: For every real number *x*,

$$-|x| \le x \le |x|.$$

Proof: Suppose that *x* is a real number. Hence, either $x \ge 0$ or x < 0.

<u>Case 1:</u> Suppose that $x \ge 0$. Hence, $-x \le 0$ and $|x| \stackrel{m}{=} x$. So, $-x \le 0 \le x$. Thus, $-x \le x \le x$. Hence, $-|x| \le x \le |x|$, by substitution. <u>Case 2:</u> Suppose that x < 0. Hence, -x > 0 and $|x| \stackrel{m}{=} -x$. So, x < 0 < -x. Thus, $x \le x \le -x$. Hence, since -|x| = x, $-|x| \le x \le |x|$, by substitution. In either case, $-|x| \le x \le |x|$.

Theorem 8 (The Triangle Inequality): If *a* and *b* are any real numbers, then $|a + b| \le |a| + |b|$.

Proof: Suppose that *a* and *b* are any real numbers. Hence, $-|a| \le a \le |a|$ and $-|b| \le b \le |b|$, by Theorem 7. So, $-|a| - |b| \le a + b \le |a| + |b|$. Thus, $-(|a| + |b|) \le a + b \le (|a| + |b|)$. Therefore, $|a + b| \le |a| + |b|$, by Theorem 2.

"Only he who never plays, never loses."

Written and published every Saturday by Richard Shedenhelm