

The Fundamental Properties of Real Numbers

In later issues, we will make reference to the following properties of real numbers. In these properties, a, b, and c denote real numbers.

Axiom 1 (Closure): The sum, $a+b$ and the product, $a b$, are unique real numbers.

Axiom 2 (Commutation):

1. $a+b=b+a$
2. $a b=b a$

Axiom 3 (Association):

1. $a+(b+c)=(a+b)+c$
2. $a(b c)=(a b) c$

Axiom 4 (Distribution):

1. $a(b+c)=a b+a c$
2. $(a+b) c=a c+b c$

Axiom 5 (Identity Elements):

1. Additive Identity: There exists a real number 0 such that $a+0=0+a=a$ for every a.
2. Multiplicative Identity: There exists a real number 1 (different from 0) such that $a \cdot 1=1 \cdot a=a$ for every a.

Axiom 6 (Inverse Elements):

1. Additive Inverse: For every a there exists a real number called "the additive inverse of a," denoted by " $-a$," such that $a+(-a)=-a+a=0$.
2. Multiplicative Inverse or Reciprocal: For every non-zero a there exists a real number called "the multiplicative inverse of a," denoted by " $\frac{1}{a}$," such that $a\left(\frac{1}{a}\right)=\left(\frac{1}{a}\right) a=1$.

Fundamental Addition Property: If $a=b$, then $a+c=b+c$.
Proof: Suppose that

$$
a=b
$$

But

$$
a+c=a+c .
$$

Therefore,

$$
a+c=b+c
$$

by substitution.

Remark: Without special comment, we shall include in this property the variation If $a=b$, then $c+a=c+b$.

Fundamental Multiplication Property: If $a=b$, then $a c=b c$.
Proof: Suppose that

$$
a=b .
$$

But

$$
a c=a c .
$$

Therefore,

$$
a c=b c
$$

by substitution.

Remark: Without special comment, we shall include in this property the variation If $a=b$, then $c a=c b$.

