

Some Basic Properties of the Additive Inverse

(Part 1)
Reference to the real number axioms and the fundamental properties of addition and multiplication are found in $W R$ no. 160. In the following, a, b, and c denote real numbers.

Theorem 1 (Cancellation of Addition): If $a+c=b+c$, then $a=b$.
Preliminary Remark: Note that this theorem is the converse of the Fundamental Addition Property.

Proof: Suppose that

$$
a+c=b+c .
$$

Hence, there exists $-c$ by Axiom 6. So,

$$
(a+c)+(-c)=(b+c)+(-c)
$$

by the Fundamental Addition Property. Thus,

$$
a+[c+(-c)]=b+[c+(-c)]
$$

by Axiom 3. Hence,

$$
a+0=b+0,
$$

by Axiom 6. Therefore,

$$
a=b,
$$

by Axiom 5.

Remark: Without special comment, we shall include in this theorem the variation If $c+a=c+b$, then $a=b$.

Theorem 2: The additive inverse of every a is unique.
Proof: Suppose that b and c are two (possibly distinct) additive inverses of a. Hence,

$$
a+b=0
$$

and

$$
a+c=0
$$

by Axiom 6. So,

$$
a+b=a+c
$$

Therefore

$$
b=c
$$

by Theorem 1, i.e., the additive inverse of a is unique.

Theorem 3: If $a+b=0$, then $b=-a$.
Proof: Suppose that

$$
a+b=0
$$

But

$$
a+(-a)=0
$$

by Axiom 6. Therefore,

$$
b=-a,
$$

by Theorem 2 .

Theorem 4:

$$
a \cdot 0=0
$$

Preliminary Remark: In words: The product of any real number times zero is equal to zero.

Proof:

$$
a \cdot 0 \stackrel{\mathrm{A5}}{\leftrightarrows} a \cdot(0+0) \stackrel{\mathrm{A4}}{=} a \cdot 0+a \cdot 0 .
$$

But

$$
-(a \cdot 0)
$$

exists, by Axiom 6. Hence,

$$
a \cdot 0+[-(a \cdot 0)]=(a \cdot 0+a \cdot 0)+[-(a \cdot 0)]
$$

by the Fundamental Addition Property. So,

$$
a \cdot 0+[-(a \cdot 0)]=a \cdot 0+\{a \cdot 0+[-(a \cdot 0)]\}
$$

by Axiom 3. Thus,

$$
0=a \cdot 0+0
$$

by Axiom 6. Therefore,

$$
0=a \cdot 0
$$

by Axiom 5.

