The Weekly Rigor

No. 162

"A mathematician is a machine for turning coffee into theorems."

July 29, 2017

Some Basic Properties of the Additive Inverse

(Part 2)

-a = (-1)a.

Theorem 5:

Preliminary Remark: In words: The negative of any real number is equal to negative one times that real number.

	T4 A2	A6	A4	A5
Proof:	$0 \cong a \cdot 0 \cong$	$0 \cdot a \cong [1 + ($	$[-1)]a \cong 1 \cdot a +$	$(-1)a \stackrel{\frown}{=} a + (-1)a.$
Hence,		_		
	-a + 0	= -a + [a +]	(-1)a],	
by the Fundamental Addition Property. So,				
	-a + 0	= (-a + a) +	-(-1)a,	
by Axiom 3. Thus,				
	-a =	(-a + a) + ((-1)a,	
by Axiom 5. Hence,				
		a = 0 + (-1)	а,	
by Axiom 6. Therefore,				
		-a = (-1)a,		
by Axiom 5.				

Theorem 6:	-(-a) = a
------------	-----------

Preliminary Remark: In words: The double negative of any real number is equal to just the real number alone.

Proof:	-(-a) + (-a) = 0,
by Axiom 6. Hence,	
	[-(-a) + (-a)] + a = 0 + a,
by the Fundamental Addition Pro-	operty. So,
	-(-a) + (-a + a) = 0 + a,
by Axiom 3. Thus,	
	-(-a) + (-a + a) = a,
by Axiom 5. Hence,	
	-(-a)+0=a,
by Axiom 6. Therefore,	
	-(-a)=a,
by Axiom 5.	

Theorem 7:	a(-b) = -ab.
------------	--------------

Proof:
$$a(-b) \stackrel{\mathrm{T5}}{=} a[(-1)b] \stackrel{\mathrm{A3}}{=} [a(-1)]b \stackrel{\mathrm{A2}}{=} [(-1)a]b \stackrel{\mathrm{A3}}{=} (-1)(ab) \stackrel{\mathrm{T5}}{=} -ab.$$

Theorem 8:
$$(-a)b = -ab.$$

Proof: $(-a)b \stackrel{\text{A2}}{=} b(-a) \stackrel{\text{T7}}{=} -ba \stackrel{\text{A2}}{=} -ab.$

Theorem 9:
$$(-a)(-b) = ab$$
.

Proof:
$$(-a)(-b) \stackrel{\mathrm{T8}}{=} - a(-b) \stackrel{\mathrm{T7}}{=} - [-(ab)] \stackrel{\mathrm{T6}}{=} ab.$$

Theorem 10:
$$-(a + b) = (-a) + (-b).$$

Proof:
$$-(a+b) \stackrel{\text{T5}}{=} (-1)(a+b) \stackrel{\text{A4}}{=} (-1)a + (-1)b \stackrel{\text{T5}}{=} (-a) + (-b).$$

Theorem 11:	a = b if and only if $-a = -b$.	
Proof: Suppose that		
But	a = b.	
Hence,	-a = -a.	
	-a=-b,	
by substitution. Suppose that		
-a = -b. Hence, by the Fundamental Addition Property,		
	$-a+b=-b+b\stackrel{\rm A6}{\cong}0.$	
So,	b = -(-a).	
by Theorem 3. Therefore,		
by Theorem 6.	b=a,	

"Only he who never plays, never loses."