The Weekly Rigor

No. 163

"A mathematician is a machine for turning coffee into theorems."

August 5, 2017

The Uniqueness of the Additive Identity and Inverse in a Vector Space

Definition 1: A *vector space* over the field \mathbb{F} is a set *V* along with an addition on *V* and a scalar multiplication on *V* such that the following properties hold.

- 1. commutativity of addition: $\vec{v} + \vec{w} = \vec{w} + \vec{v}$ for all \vec{v}, \vec{w} in V.
- 2. associativity of addition: $(\vec{v} + \vec{w}) + \vec{y} = \vec{v} + (\vec{w} + \vec{y})$ for all $\vec{v}, \vec{w}, \vec{y}$ in *V*.
- 3. associativity of scalar multiplication: $(\lambda \alpha)\vec{v} = \lambda(\alpha \vec{v})$ for all λ , α in \mathbb{F} and \vec{v} in *V*.
- 4. the vector space contains an additive identity: There exists a $\vec{0}$ in V such that $\vec{0} + \vec{v} = \vec{v}$ for all \vec{v} in V.
- 5. each vector in the vector space has an additive inverse: For each \vec{v} in *V* there exists a $-\vec{v}$ in *V* such that $\vec{v} + (-\vec{v}) = \vec{0}$.
- 6. scaling a vector by the multiplicative identity in the field leaves the vector unchanged. $1\vec{v} = \vec{v}$ for all \vec{v} in *V*.
- 7. distributive properties: for all scalars λ and α in \mathbb{F} and vectors \vec{v} and \vec{w} in *V*, $\lambda(\vec{v} + \vec{w}) = \lambda \vec{v} + \lambda \vec{w}$ and $\vec{v}(\lambda + \alpha) = \vec{v}\lambda + \vec{v}\lambda$.

Theorem 1 (Right Cancellation of Addition): If $\vec{v} + \vec{y} = \vec{w} + \vec{y}$, then $\vec{v} = \vec{w}$.

Proof: Suppose that

Hence, there exists $-\vec{y}$ such that

by Definition 1.5. So,

$$(\vec{v} + \vec{y}) + (-\vec{y}) = (\vec{w} + \vec{y}) + (-\vec{y}).$$

 $\vec{v} + (-\vec{v}) = \vec{0}.$

 $\vec{v} + \vec{v} = \vec{w} + \vec{v}.$

Thus,

$$\vec{v} + (\vec{y} + (-\vec{y})) = \vec{w} + (\vec{y} + (-\vec{y})),$$

by Definition 1.2. Hence,

 $\vec{v} + \vec{0} = \vec{w} + \vec{0},$

by substitution. Therefore,

by Definition 1.4.

Theorem 2: The additive identity of a vector space is unique.

Proof: Suppose that \vec{a} and \vec{b} are two (possibly distinct) additive identities for a vector space. Hence, $\vec{a} + \vec{v} = \vec{v}$

 $\vec{b} + \vec{v} = \vec{v},$

 $\vec{a} + \vec{v} = \vec{b} + \vec{v}.$

 $\vec{a} = \vec{b}$.

 $\vec{v} = \vec{w}$,

and

by Definition 1.4. So,

Therefore,

by Theorem 1, i.e., the additive inverse of a vector space is unique.

Theorem 3: The additive inverse of \vec{v} in the vector space V is unique.

Proof: Suppose that \vec{a} and \vec{b} are two (possibly distinct) additive inverses of \vec{v} in the vector space *V*. Hence,

1	$\vec{v} + \vec{a} = \vec{0}$
and	$\vec{v} + \vec{b} = \vec{0}.$
by Definition 1.5. So,	, , , , →
Thus,	$\vec{v} + \vec{a} = \vec{v} + b.$
by Definition 1.1. Therefore,	$\vec{a} + \vec{v} = \vec{b} + \vec{v},$
	$\vec{a} = \vec{h}$

by Theorem 1, i.e., the additive inverse of a vector space is unique.

"Only he who never plays, never loses."

Written and published every Saturday by Richard Shedenhelm WeeklyRigor@gmail.com