

A Proof That $\boldsymbol{i}^{2}=\mathbf{- 1}$

INTRODUCTION

Most math textbooks define i to be equal to $\sqrt{-1}$. The others begin by defining i^{2} to be equal to -1 . In fact, the set of complex numbers can be defined in such a way that the fact that $i^{2}=-1$ is a proved result and not just a definition. This article lays out one such method.

Definition 1: A complex number is an ordered pair (a, b), where $a, b \in \mathbb{R}$. The set of all complex numbers is denoted by $\mathbb{C}: \mathbb{C}=\{(a, b): a, b \in \mathbb{R}\}$.

Definition 2: Addition and multiplication on \mathbb{C} is defined by

$$
\begin{aligned}
& (a, b)+(c, d)=(a+c, b+d) \\
& (a, b)(c, d)=(a c-b d, a d+b c)
\end{aligned}
$$

Theorem 1:

$$
(0,1)(0,1)=(-1,0)
$$

Proof:

$$
(0,1)(0,1) \stackrel{\mathrm{D} 2}{\cong}(0 \cdot 0-1 \cdot 1,0 \cdot 1+1 \cdot 0)=(-1,0) .
$$

Definition 3:

$$
(a, b)=a+b i .
$$

Remark: We may write the complex numbers $(0, b)$ and $(a, 0)$ as follows:

$$
\begin{aligned}
& (0, b)=0+b i=b i \\
& (a, 0)=a+0 i=a .
\end{aligned}
$$

Theorem 2:

$$
i^{2}=-1
$$

Proof: $\quad i^{2}=i \cdot i=(1 \cdot i)(1 \cdot i) \stackrel{\text { D3 }}{=}(0+1 i)(0+1 i) \stackrel{\text { D3 }}{\leftrightarrows}(0,1)(0,1) \stackrel{\text { T1 }}{=}(-1,0) \stackrel{\text { D3 }}{=}-1$.
"Only he who never plays, never loses."

