The Weekly Rigor

No. 183

"A mathematician is a machine for turning coffee into theorems."

December 23, 2017

Proofs of the Elementary Properties of Definite Integrals (Part 1)

Definition 1:
$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x,$$
where $\Delta x = \frac{b-a}{n}$.

Theorem 1:

$$\int_{a}^{a} f(x) dx = 0.$$

Proof: $\int_a^a f(x) dx \stackrel{\text{D1}}{=} \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \left(\frac{a-a}{n}\right) = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*)(0) = \lim_{n \to \infty} 0 = 0.$

Theorem 2:
$$\int_a^b f(x) dx = -\int_b^a f(x) dx.$$

Proof: $\int_{a}^{b} f(x) dx \stackrel{\text{D1}}{=} \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \left(\frac{b-a}{n}\right) = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \left(\frac{-[a-b]}{n}\right) =$ $= \lim_{n \to \infty} -\sum_{i=1}^{n} f(x_{i}^{*}) \left(\frac{a-b}{n}\right) = -\lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \left(\frac{a-b}{n}\right) \stackrel{\text{D1}}{=} -\int_{b}^{a} f(x) dx.$

Theorem 3:
$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx.$$

Proof: $\int_{a}^{b} cf(x) dx \stackrel{\text{D1}}{=} \lim_{n \to \infty} \sum_{i=1}^{n} cf(x_{i}^{*}) \Delta x = \lim_{n \to \infty} c \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x = c \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x \stackrel{\text{D1}}{=} \prod_{i=1}^{n} c \int_{a}^{b} f(x) dx.$

Theorem 4:
$$\int_a^b c dx = c(b-a).$$

Proof:
$$\int_{a}^{b} c dx \stackrel{\text{T3}}{=} c \int_{a}^{b} 1 dx \stackrel{\text{D1}}{=} c \lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{b-a}{n}\right) = c \lim_{n \to \infty} (b-a) \sum_{i=1}^{n} \frac{1}{n} = c(b-a) \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} = c(b-a) \lim_{n \to \infty} \frac{1}{n} = c(b-a) \lim_{n \to \infty} \frac{1}{n} = c(b-a) \lim_{n \to \infty} 1 = c(b-a)(1) = c(b-a).$$

Theorem 5:

$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{b}^{a} f(x) dx \pm \int_{b}^{a} g(x) dx.$$
Proof:
$$\int_{a}^{b} [f(x) \pm g(x)] dx \stackrel{\text{D1}}{=} \lim_{n \to \infty} \sum_{i=1}^{n} [f(x_{i}^{*}) \pm g(x_{i}^{*})] \Delta x =$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} [f(x_{i}^{*}) \Delta x \pm g(x_{i}^{*}) \Delta x] = \lim_{n \to \infty} [\sum_{i=1}^{n} f(x_{i}^{*}) \Delta x \pm \sum_{i=1}^{n} g(x_{i}^{*}) \Delta x] =$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x \pm \lim_{n \to \infty} \sum_{i=1}^{n} g(x_{i}^{*}) \Delta x \stackrel{\text{D1}}{=} \int_{b}^{a} f(x) dx \pm \int_{b}^{a} g(x) dx.$$

Theorem 6: If $f(x) \ge 0$ for $a \le x \le b$, then $\int_a^b f(x) dx \ge 0$.

Proof: Suppose that $f(x) \ge 0$ for $a \le x \le b$. Hence, $\Delta x \ge 0$. So, $\sum_{i=1}^{n} f(x_i^*) \Delta x \ge 0$. Thus, $\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x \ge \lim_{n \to \infty} 0 = 0$. Therefore, $\int_a^b f(x) dx \ge 0$, by Definition 1.

"Only he who never plays, never loses."

Written and published every Saturday by Richard Shedenhelm