The Weekly Rigor

No. 184

"A mathematician is a machine for turning coffee into theorems."

December 30, 2017

Proofs of the Elementary Properties of Definite Integrals (Part 2)

Theorem 7: If $f(x) \ge g(x)$ for $a \le x \le b$, then $\int_a^b f(x) dx \ge \int_a^b f(x) dx$.

Proof: Suppose that $f(x) \ge g(x)$ for $a \le x \le b$. Hence, $f(x) - g(x) \ge 0$. So, $\int_a^b [f(x) - g(x)] dx \ge 0$, by Theorem 6. Thus, $\int_b^a f(x) dx - \int_b^a g(x) dx \ge 0$, by Theorem 5. Therefore, $\int_a^b f(x) dx \ge \int_a^b f(x) dx$

Theorem 8: If $m \le f(x) \le M$ for $a \le x \le b$, then $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$.

Proof: Suppose that $m \le f(x) \le M$ for $a \le x \le b$. Hence, $\int_a^b m dx \le \int_a^b f(x) dx \le \int_a^b M dx$, by Theorem 7. Therefore, $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$, by Theorem 4.

Theorem 9: $\left|\int_{a}^{b} f(x)dx\right| \leq \int_{a}^{b} |f(x)|dx.$

Proof: $-|f(x)| \le f(x) \le |f(x)|$, by Theorem 7 of *WR* no. 158. Hence, $\int_a^b -|f(x)| dx \le \int_a^b f(x) dx \le \int_a^b |f(x)| dx$, by Theorem 7. So, $-\int_a^b |f(x)| dx \le \int_a^b f(x) dx \le \int_a^b |f(x)| dx$, by Theorem 3. Therefore, $\left|\int_a^b f(x) dx\right| \le \int_a^b |f(x)| dx$, by Theorem 2 of *WR* no. 156.

Theorem 10: $\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx.$

$$\begin{aligned} \mathbf{Proof:} \ \int_{a}^{b} f(x) dx &+ \int_{b}^{c} f(x) dx \stackrel{\text{D1}}{=} \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \left(\frac{b-a}{n}\right) + \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \left(\frac{c-b}{n}\right) = \\ &= \lim_{n \to \infty} \left(\frac{b-a}{n}\right) \sum_{i=1}^{n} f(x_{i}^{*}) + \lim_{n \to \infty} \left(\frac{c-b}{n}\right) \sum_{i=1}^{n} f(x_{i}^{*}) = \\ &= \left(\frac{b-a}{n}\right) \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) + \left(\frac{c-b}{n}\right) \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) = \frac{(b-a)+(c-b)}{n} \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) = \\ &= \frac{c-a}{n} \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) = \lim_{n \to \infty} \left(\frac{c-a}{n}\right) \sum_{i=1}^{n} f(x_{i}^{*}) = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \left(\frac{c-a}{n}\right) \stackrel{\text{D1}}{=} \int_{a}^{c} f(x) dx. \end{aligned}$$

"Only he who never plays, never loses."

Written and published every Saturday by Richard Shedenhelm