©he 相rekly Thigar

The Elementary Properties of Vector Spaces

(Part 2)
Theorem 6: $c \overrightarrow{0}=\overrightarrow{0}$.
Proof: $c \overrightarrow{0} \stackrel{\mathrm{~A} 4}{=} c(\overrightarrow{0}+\overrightarrow{0}) \stackrel{\mathrm{A} 7}{=} c \overrightarrow{0}+c \overrightarrow{0}$. Hence, $c \overrightarrow{0}+(-c \overrightarrow{0})=[c \overrightarrow{0}+c \overrightarrow{0}]+(-c \overrightarrow{0})$. So, $c \overrightarrow{0}+(-c \overrightarrow{0})=c \overrightarrow{0}+[c \overrightarrow{0}+(-c \overrightarrow{0})]$, by Axiom 3. Thus, $\overrightarrow{0}=c \overrightarrow{0}+\overrightarrow{0}$, by Axiom 5. Therefore, $\overrightarrow{0}=c \overrightarrow{0}$, by Axiom 4 .

Theorem 7: $(-1) \vec{u}=-\vec{u}$.
Proof: $0 \vec{u}=\overrightarrow{0}$, by Theorem 5. Hence, $[1+(-1)] \vec{u}=\overrightarrow{0}$. So, $1 \vec{u}+(-1) \vec{u}=\overrightarrow{0}$, by Axiom 8 . Thus, $\vec{u}+(-1) \vec{u}=\overrightarrow{0}$, by Axiom 10. Hence, $-\vec{u}+[\vec{u}+(-1) \vec{u}]=-\vec{u}+\overrightarrow{0}$. So, $[(-\vec{u})+\vec{u}]+(-1) \vec{u}=-\vec{u}+\overrightarrow{0}$, by Axiom 3. Thus, $[\vec{u}+(-\vec{u})]+(-1) \vec{u}=-\vec{u}+\overrightarrow{0}$, by Axiom 2. Hence, $\overrightarrow{0}+(-1) \vec{u}=-\vec{u}+\overrightarrow{0}$, by Axiom 5. So, $(-1) \vec{u}+\overrightarrow{0}=-\vec{u}+\overrightarrow{0}$, by Axiom 2 . Therefore, $(-1) \vec{u}=-\vec{u}$, by Axiom 4 .

Theorem 8: If $c \vec{u}=\overrightarrow{0}$ for some scalar $c \neq 0$, then $\vec{u}=\overrightarrow{0}$.
Proof: Suppose that $c \vec{u}=\overrightarrow{0}$ for some scalar $c \neq 0$. Hence, $\frac{1}{c}(c \vec{u})=\frac{1}{c} \overrightarrow{0}$. So, $\left(\frac{1}{c} c\right) \vec{u}=\frac{1}{c} \overrightarrow{0}$, by Axiom 9. Thus, $1 \vec{u}=\frac{1}{c} \overrightarrow{0}$. Hence, $\vec{u}=\frac{1}{c} \overrightarrow{0}$, by Axiom 10. Therefore, $\vec{u}=\overrightarrow{0}$, by Theorem 6 .

Theorem 9: If $c \vec{u}=\overrightarrow{0}$, then either $c=0$ or $\vec{u}=\overrightarrow{0}$.
Proof: Suppose that $c \vec{u}=\overrightarrow{0}$. Either $c=0$ or $c \neq 0$.
Case 1: Suppose that $c=0$. Hence, either $c=0$ or $\vec{u}=\overrightarrow{0}$.
Case 2: Suppose that $c \neq 0$. Hence, $\vec{u}=\overrightarrow{0}$, by Theorem 8. So, either $c=0$ or $\vec{u}=\overrightarrow{0}$.

Theorem 10: If $\vec{u} \neq \overrightarrow{0}$, then $c \vec{u}=\overrightarrow{0}$ if and only if $c=0$.
Proof: Suppose that $\vec{u} \neq \overrightarrow{0}$.
Suppose that $c \vec{u}=\overrightarrow{0}$. Hence, $c=0$, by Theorem 9 .
Suppose that $c=0$. Hence, $c \vec{u}=\overrightarrow{0}$, by Theorem 5 .

Theorem 11: If $\vec{u} \neq \overrightarrow{0}$, then $c \vec{u}=d \vec{u}$ if and only if $c=d$.
Proof: Suppose that $\vec{u} \neq \overrightarrow{0}$.
Suppose that $c \vec{u}=d \vec{u}$. Hence, $c \vec{u}+(-d \vec{u})=d \vec{u}+(-d \vec{u})$. So, $c \vec{u}+(-d \vec{u})=\overrightarrow{0}$, by
Axiom 5. Thus, $[c+(-d)] \vec{u}=\overrightarrow{0}$, by Axiom 8. Hence, $c+(-d)=0$, by Theorem 10. So, $c=d$.

Suppose that $c=d . c \vec{u}=c \vec{u}$. Hence, $c \vec{u}=d \vec{u}$, by substitution.
"Only he who never plays, never loses."

