

A Positive Times a Negative Equals a Negative: An Alternate Proof

This issue offers a proof that a positive number times a negative number equals a negative number, for any real numbers. This proof differs from the one demonstrated as Theorem 8 of $W R$ no. 162. Reference to the real number axioms and the Fundamental Multiplication Property are found in $W R$ no. 160. In the following, a and b denote real numbers.

Before proceeding to the abstract proof, let us see the reasoning using concrete integers. We claim, say, that $4(-5)=-(4 \cdot 5)$. We prove this claim as follows.

Claim:

$$
4(-5)=-(4 \cdot 5)
$$

Proof:

$$
5+(-5)=0
$$

by Axiom 6. Hence,

$$
4(5+(-5))=4 \cdot 0
$$

by the Fundamental Multiplication Property. So,

$$
4(5+(-5))=0
$$

by Theorem 4 of $W R$ no. 160. Thus,

$$
4 \cdot 5+4(-5)=0
$$

by Axiom 4. But

$$
4 \cdot 5+[-(4 \cdot 5)]=0
$$

by Axiom 6. Consequently,

$$
4 \cdot 5+4(-5)=4 \cdot 5+[-(4 \cdot 5)]
$$

Therefore,

$$
4(-5)=-(4 \cdot 5)
$$

by Theorem 1 of $W R$ no. 160.

Remark: Without special comment, we shall include in this claim the variation

$$
(-4) 5=-(4 \cdot 5)
$$

And now we generalize from the particular numbers 4 and 5 to any real numbers a and b, using exactly the same steps of reasoning.

Theorem 1:

$$
a(-b)=-(a b)
$$

Proof:

$$
b+(-b)=0,
$$

by Axiom 6. Hence,

$$
a(b+(-b))=a \cdot 0
$$

by the Fundamental Multiplication Property. So,

$$
a(b+(-b))=0
$$

by Theorem 4 of $W R$ no. 160. Thus,

$$
a b+a(-b)=0
$$

by Axiom 4. But

$$
a b+[-(a b)]=0,
$$

by Axiom 6. Consequently,

$$
a b+a(-b)=a b+[-(a b)]
$$

Therefore,

$$
a(-b)=-(a b)
$$

by Theorem 1 of $W R$ no. 160.

Remark: Without special comment, we shall include in this theorem the variation

$$
(-a) b=-(a b)
$$

"Only he who never plays, never loses."

