The Weekly Rigor

No. 187

"A mathematician is a machine for turning coffee into theorems."

January 20, 2018

A Positive Times a Negative Equals a Negative: An Alternate Proof

This issue offers a proof that a positive number times a negative number equals a negative number, for any real numbers. This proof differs from the one demonstrated as Theorem 8 of WR no. 162. Reference to the real number axioms and the Fundamental Multiplication Property are found in WR no. 160. In the following, *a* and *b* denote real numbers.

Before proceeding to the abstract proof, let us see the reasoning using concrete integers. We claim, say, that $4(-5) = -(4 \cdot 5)$. We prove this claim as follows.

Claim:

$$4(-5) = -(4 \cdot 5).$$

Proof:
 $5 + (-5) = 0,$
by Axiom 6. Hence,
 $4(5 + (-5)) = 4 \cdot 0,$
by the Fundamental Multiplication Property. So,
 $4(5 + (-5)) = 0,$
by Theorem 4 of *WR* no. 160. Thus,
 $4 \cdot 5 + 4(-5) = 0,$
by Axiom 4. But
 $4 \cdot 5 + 4(-5) = 0,$
by Axiom 6. Consequently,
 $4 \cdot 5 + 4(-5) = 4 \cdot 5 + [-(4 \cdot 5)].$
Therefore,
 $4(-5) = -(4 \cdot 5),$
by Theorem 1 of *WR* no. 160.

Remark: Without special comment, we shall include in this claim the variation $(-4)5 = -(4 \cdot 5)$.

And now we generalize from the particular numbers 4 and 5 to any real numbers *a* and *b*, using exactly the same steps of reasoning.

Theorem 1:	a(-b) = -(ab).
Proof:	b + (-b) = 0,
by Axiom 6. Hence,	
	$a(b+(-b)) = a \cdot 0,$
by the Fundamental Multiplication Property. So,	
	a(b + (-b)) = 0,
by Theorem 4 of WR no. 160. Thus,	
-	ab + a(-b) = 0,
by Axiom 4. But	
	$ab + \left[-(ab)\right] = 0,$
by Axiom 6. Consequently,	
ab	+ a(-b) = ab + [-(ab)].
Therefore,	
	a(-b) = -(ab),
by Theorem 1 of WR no. 160.	

Remark: Without special comment, we shall include in this theorem the variation (-a)b = -(ab).

"Only he who never plays, never loses."

Written and published every Saturday by Richard Shedenhelm