

A Negative Times a Negative Equals a Positive: An Alternate Proof

This issue offers a proof that a negative number times a negative number equals a positive number, for any real numbers. This proof differs from the one demonstrated as Theorem 9 of $W R$ no. 162. Reference to the real number axioms and the Fundamental Multiplication Property are found in $W R$ no. 160. In the following, a and b denote real numbers.

Before proceeding to the abstract proof, let us see the reasoning using concrete integers. We claim, say, that $(-4)(-5)=4 \cdot 5$. We prove this claim as follows.

Claim:

$$
(-4)(-5)=4 \cdot 5
$$

Proof:

$$
5+(-5)=0
$$

by Axiom 6. Hence,

$$
(-4)(5+(-5))=(-4) \cdot 0
$$

by the Fundamental Multiplication Property. So,

$$
(-4)(5+(-5))=0
$$

by Theorem 4 of $W R$ no. 160. Thus,

$$
(-4) \cdot 5+(-4)(-5)=0
$$

by Axiom 4. Hence,

$$
-(4 \cdot 5)+(-4)(-5)=0
$$

by Theorem 1 of $W R$ no. 187. But

$$
-(4 \cdot 5)+4 \cdot 5=0
$$

by Axiom 6. Consequently,

$$
-(4 \cdot 5)+(-4)(-5)=-(4 \cdot 5)+4 \cdot 5
$$

Therefore,

$$
(-4)(-5)=4 \cdot 5
$$

by Theorem 1 of $W R$ no. 160.

And now we generalize from the particular numbers 4 and 5 to any real numbers a and b, using exactly the same steps of reasoning.

Theorem 1:

$$
(-a)(-b)=a b
$$

Proof:

$$
b+(-b)=0,
$$

by Axiom 6. Hence,

$$
(-a)(b+(-b))=(-a) \cdot 0
$$

by the Fundamental Multiplication Property. So,

$$
(-a)(b+(-b))=0
$$

by Theorem 4 of $W R$ no. 160. Thus,

$$
(-a) b+(-a)(-b)=0
$$ by Axiom 4. Hence,

$$
-(a b)+(-a)(-b)=0,
$$

by Theorem 1 of $W R$ no. 187. But

$$
-(a b)+a b=0
$$

by Axiom 6. Consequently,

$$
-(a b)+(-a)(-b)=-(a b)+a b .
$$

Therefore,

$$
(-a)(-b)=a b
$$

by Theorem 1 of $W R$ no. 160.
"Only he who never plays, never loses."

