The Weekly Rigor

No. 188

"A mathematician is a machine for turning coffee into theorems."

January 27, 2018

A Negative Times a Negative Equals a Positive: An Alternate Proof

This issue offers a proof that a negative number times a negative number equals a positive number, for any real numbers. This proof differs from the one demonstrated as Theorem 9 of WR no. 162. Reference to the real number axioms and the Fundamental Multiplication Property are found in WR no. 160. In the following, *a* and *b* denote real numbers.

Before proceeding to the abstract proof, let us see the reasoning using concrete integers. We claim, say, that $(-4)(-5) = 4 \cdot 5$. We prove this claim as follows.

Claim:
$$(-4)(-5) = 4 \cdot 5.$$

Proof: $5 + (-5) = 0,$
by Axiom 6. Hence, $(-4)(5 + (-5)) = (-4) \cdot 0,$
by the Fundamental Multiplication Property. So,
 $(-4)(5 + (-5)) = 0,$
by Theorem 4 of WR no. 160. Thus,
 $(-4) \cdot 5 + (-4)(-5) = 0,$
by Axiom 4. Hence, $-(4 \cdot 5) + (-4)(-5) = 0,$
by Theorem 1 of WR no. 187. But
 $-(4 \cdot 5) + (-4)(-5) = 0,$
by Axiom 6. Consequently,
 $-(4 \cdot 5) + (-4)(-5) = -(4 \cdot 5) + 4 \cdot 5.$
Therefore, $(-4)(-5) = -(4 \cdot 5) + 4 \cdot 5.$
Therefore, $(-4)(-5) = 4 \cdot 5,$
by Theorem 1 of WR no. 160.

And now we generalize from the particular numbers 4 and 5 to any real numbers *a* and *b*, using exactly the same steps of reasoning.

Theorem 1:	(-a)(-b) = ab.
Proof:	b + (-b) = 0,
by Axiom 6. Hence,	
	$(-a)(b + (-b)) = (-a) \cdot 0,$
by the Fundamental Multiplication Property. So,	
	$(-a)\big(b+(-b)\big)=0,$
by Theorem 4 of WR no. 160. T	'hus,
	(-a)b + (-a)(-b) = 0,
by Axiom 4. Hence,	
	-(ab) + (-a)(-b) = 0,
by Theorem 1 of WR no. 187. B	
	-(ab)+ab=0,
by Axiom 6. Consequently,	
	(ab) + (-a)(-b) = -(ab) + ab.
Therefore,	
	(-a)(-b) = ab,
by Theorem 1 of WR no. 160.	

"Only he who never plays, never loses." Written and published every Saturday by Richard Shedenhelm