

A Proof of the Zero Product Property

This issue offers a proof of the "Zero Product Property," i.e., the principle that if any two real numbers have a product of 0 , then at least one of the numbers is also 0 . Reference to the real number axioms and the Fundamental Multiplication Property are found in WR no. 160. In the following, a and b denote real numbers.

Before proceeding to the abstract proof, let us see the reasoning using a more concrete situation. We claim, say, that given $4 x=0$, it must be the case that $x=0$. We prove this claim as follows.

Claim: If $4 x=0$, then $x=0$.
Proof: Suppose that

$$
4 x=0
$$

Hence, there exists $\frac{1}{4}$ such that

$$
\left(\frac{1}{4}\right) 4=1
$$

by Axiom 6. So,

$$
\left(\frac{1}{4}\right) 4 x=\left(\frac{1}{4}\right) \cdot 0,
$$

by the Fundamental Multiplication Property. Thus,

$$
\left(\frac{1}{4}\right) 4 x=0
$$

by Theorem 4 of $W R$ no. 161. So,

$$
\text { (1) } x=0 \text {, }
$$

by substitution. Therefore,

$$
x=0
$$

by Axiom 5.

And now we generalize from the particular situation of 4 times an unknown x to the product of any real numbers a and b, using similar steps of reasoning.

Theorem 1: If $a b=0$, then either $a=0$ or $b=0$.
Proof: Suppose that

$$
a b=0
$$

WLOG, suppose that

$$
b \neq 0
$$

Hence, there exists $\frac{1}{b}$ such that

$$
b\left(\frac{1}{b}\right)=1
$$

by Axiom 6. So,

$$
a b\left(\frac{1}{b}\right)=0 \cdot\left(\frac{1}{b}\right),
$$

by the Fundamental Multiplication Property. Thus,

$$
a b\left(\frac{1}{b}\right)=\left(\frac{1}{b}\right) \cdot 0
$$

by Axiom 2. Hence,

$$
a b\left(\frac{1}{b}\right)=0
$$

by Theorem 4 of $W R$ no. 161. So,

$$
a(1)=0,
$$

by substitution. Thus,

$$
a=0
$$

by Axiom 5. Therefore, either $a=0$ or $b=0$.

