#  

## 16 Problems in Finding Linear Functions

## (Part 2)

## SELECTED SOLUTIONS

1. Using the slope-intercept form equation, $y=m x+b$, where $m$ specifies the slope of the line and $b$ the $y$-intercept, we have by substitution $y=2 x+7$.
2. Step 1: Using the slope formula, $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$, we can let $\left(x_{1}, y_{1}\right)=(2,5)$ and $\left(x_{2}, y_{2}\right)=(4,7)$. Hence, $m=\frac{7-5}{4-2}=\frac{2}{2}=1$. (We could also have chosen $\left(x_{1}, y_{1}\right)=(4,7)$ and $\left(x_{2}, y_{2}\right)=(2,5)$. By the slope formula we get the same slope: $m=\frac{5-7}{2-4}=\frac{-2}{-2}=1$.)

Step 2: Next we can use the slope-intercept form equation, $y=m x+b$, to find what $b$ is. We can use either given point and substitute in the values of $x, y$, and $m$ :

$$
\begin{gathered}
y=m x+b \\
5=1(2)+b \\
3=b
\end{gathered}
$$

Now that we know the slope $m$ and the $y$-intercept $b$, we can write the equation of the line:

$$
y=x+3
$$

Note that if we had used the other point, $(4,7)$, we would get the same answer:

$$
\begin{gathered}
y=m x+b \\
7=1(4)+b \\
3=b
\end{gathered}
$$

Hence, the equation is again

$$
y=x+3
$$

5. The slope of the given line is -2 , and our line is parallel to the given line. Hence, our slope is the same, namely, $m=-2$. Now we can use the slope-intercept form equation, $y=m x+b$, to find what $b$ is. We can use the given point, $(-1,-1)$, and substitute in the values of $x, y$, and $m$ :

$$
\begin{gathered}
y=m x+b \\
-1=-2(-1)+b \\
-1=2+b \\
-3=b
\end{gathered}
$$

Now that we know the slope $m$ and the $y$-intercept $b$, we can write the equation of the line:

$$
y=-2 x-3
$$

7. The $y$-value of any $x$-intercept is 0 . Hence, we were actually given the point $\left(\frac{-1}{5}, 0\right)$. On the other hand, the $x$-value of any $y$-intercept is 0 . So, we were actually given the point $(0,2)$. Thus, now we can proceed as in problem 3.

Step 1: Using the slope formula, $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$, we can let $\left(x_{1}, y_{1}\right)=\left(\frac{-1}{5}, 0\right)$ and $\left(x_{2}, y_{2}\right)=(0,2)$. Hence, $m=\frac{2-0}{0-\frac{-1}{5}}=\frac{2-0}{0+\frac{1}{5}}=\frac{2}{\left(\frac{1}{5}\right)}=\frac{\left(\frac{2}{1}\right)}{\left(\frac{1}{5}\right)}=\frac{2}{1} \cdot \frac{5}{1}=10$.

Step 2: Next we can use the slope-intercept form equation, $y=m x+b$, to find what $b$ is. We can use either given point and substitute in the values of $x, y$, and $m$ :

$$
\begin{gathered}
y=m x+b \\
0=10\left(\frac{-1}{5}\right)+b \\
0=-2+b \\
2=b
\end{gathered}
$$

Now that we know the slope $m$ and the $y$-intercept $b$, we can write the equation of the line:

$$
y=10 x+2
$$

(Note that we were actually given in the original problem what $b$, the $y$-intercept, is equal to.)
"Only he who never plays, never loses."

