

14 Problems in Using the Quadratic Formula

(Part 1)

PROBLEMS

Use the Quadratic Formula to solve for x. Reduce all radical expressions to lowest factors (for example, $2 \sqrt{3}$ instead of $\sqrt{12}$).

1. $x^{2}-5 x-24=0$
2. $x^{2}+3 x-10=0$
3. $4 x^{2}+11 x-20=0$
4. $x^{2}+14 x+44=0$
5. $x^{2}-3 x-3=0$
6. $x^{2}+8 x-4=0$
7. $12 x-9 x^{2}=-3$
8. $9 x^{2}+24 x+16=0$
9. $4 x^{2}+4 x=7$
10. $28 x-49 x^{2}=4$
11. $2 x^{2}=4-x$
12. $12 x^{2}+32 x=-5$
13. $2 x^{2}=x+5$
14. $-6 x^{2}+12 x=-1$

ANSWERS

1. $x=8, x=-3$	2. $x=2, x=-5$
3. $x=\frac{5}{4}, x=-4$	4. $x=-7 \pm \sqrt{5}$
5. $x=\frac{3}{2} \pm \frac{\sqrt{21}}{2}$	6. $x=-4 \pm 2 \sqrt{5}$
7. $x=\frac{2}{3} \pm \frac{\sqrt{7}}{3}$	8. $x=-\frac{4}{3}$
9. $x=-\frac{1}{2} \pm \sqrt{2}$	10. $x=\frac{2}{7}$
11. $x=-\frac{1}{4} \pm \frac{\sqrt{33}}{4}$	12. $x=-\frac{1}{6}, x=-\frac{5}{2}$
13. $x=\frac{1}{4} \pm \frac{\sqrt{41}}{4}$	14. $x=1 \pm \frac{\sqrt{42}}{6}$

SELECTED SOLUTIONS

3. Using the Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

with $a=4, b=11$, and $c=-20$, we have by substitution

$$
\begin{gathered}
x=\frac{-11 \pm \sqrt{11^{2}-4(4)(-20)}}{2(4)}=\frac{-11 \pm \sqrt{121+320}}{8}=\frac{-11 \pm \sqrt{441}}{8}=\frac{-11 \pm 21}{8}= \\
=\frac{-11+21}{8}, \frac{-11-21}{8}=\frac{10}{8}, \frac{-32}{8}=\frac{5}{4},-4
\end{gathered}
$$

5. Using the Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

with $a=1, b=-3$, and $c=-3$, we have by substitution

$$
x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(1)(-3)}}{2(1)}=\frac{3 \pm \sqrt{9+12}}{2}=\frac{3 \pm \sqrt{21}}{2}=\frac{3}{2} \pm \frac{\sqrt{21}}{2}
$$

"Only he who never plays, never loses."
Written and published every Saturday by Richard Shedenhelm

