©he 相peklg Tingar

14 Problems in Using the Quadratic Formula

(Part 2)

7. Rearranging terms to get the equation in standard order, we have

$$
-9 x^{2}+12 x+3=0
$$

Multiplying both sides of the equation by -1 , we now have

$$
9 x^{2}-12 x-3=0
$$

Using the Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

with $a=9, b=-12$, and $c=-3$, we have by substitution

$$
\begin{gathered}
x=\frac{-(-12) \pm \sqrt{(-12)^{2}-4(9)(-3)}}{2(9)}=\frac{12 \pm \sqrt{144+108}}{18}=\frac{12 \pm \sqrt{252}}{18}=\frac{12}{18} \pm \frac{\sqrt{252}}{18}= \\
=\frac{2}{3} \pm \frac{\sqrt{36 \cdot 7}}{18}=\frac{2}{3} \pm \frac{6 \sqrt{7}}{18}=\frac{2}{3} \pm \frac{\sqrt{7}}{3}
\end{gathered}
$$

9. Rearranging terms to get the equation in standard order, we have

$$
4 x^{2}+4 x-7=0
$$

Using the Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

with $a=4, b=4$, and $c=-7$, we have by substitution

$$
\begin{gathered}
x=\frac{-4 \pm \sqrt{4^{2}-4(4)(-7)}}{2(4)}=\frac{-4 \pm \sqrt{16+112}}{8}=\frac{-4 \pm \sqrt{128}}{8}=-\frac{4}{8} \pm \frac{\sqrt{128}}{8}= \\
=-\frac{1}{2} \pm \frac{\sqrt{64 \cdot 2}}{8}=-\frac{1}{2} \pm \frac{8 \sqrt{2}}{8}=-\frac{1}{2} \pm \sqrt{2}
\end{gathered}
$$

11. Rearranging terms to get the equation in standard order, we have

$$
2 x^{2}+x-4=0
$$

Using the Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

with $a=2, b=1$, and $c=-4$, we have by substitution

$$
x=\frac{-1 \pm \sqrt{1^{2}-4(2)(-4)}}{2(2)}=\frac{-1 \pm \sqrt{1+32}}{4}=\frac{-1 \pm \sqrt{33}}{4}=-\frac{1}{4} \pm \frac{\sqrt{33}}{4}
$$

13. Rearranging terms to get the equation in standard order, we have

$$
2 x^{2}-x-5=0
$$

Using the Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

with $a=2, b=-1$, and $c=-5$, we have by substitution

$$
x=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(2)(-5)}}{2(2)}=\frac{1 \pm \sqrt{1+40}}{4}=\frac{1 \pm \sqrt{41}}{4}=\frac{1}{4} \pm \frac{\sqrt{41}}{4}
$$

"Only he who never plays, never loses."

