The Weekly Rigor

No. 235

"A mathematician is a machine for turning coffee into theorems."

December 22, 2018

26 Problems in Composite Functions and Interval Notation

(Part 1)

PROBLEMS

For problems 1-10, find each composite.

- 1. Given f(x) = -9x + 3 and $g(x) = x^4$, find $(f \circ g)(x)$ and $(g \circ f)(x)$.
- 2. Given f(x) = 2x 5 and g(x) = x + 2, find $(f \circ g)(x)$ and $(g \circ f)(x)$.
- 3. Given $f(x) = x^2 + 7$ and g(x) = x 3, find $(f \circ g)(x)$ and $(g \circ f)(x)$.
- 4. Given f(x) = 4x + 3 and $g(x) = x^2$, find $(f \circ g)(x)$ and $(g \circ f)(x)$.
- 5. Given f(x) = x 1 and $g(x) = x^2 + 2x 8$, find $(g \circ f)(x)$.
- 6. Given f(x) = x + 1 and g(x) = x + h, find $(f \circ g)(x)$.
- 7. Given $f(x) = x^2$ and g(x) = x + h, find $(f \circ g)(x)$.
- 8. Given $f(x) = \frac{1}{x}$ and g(x) = x + h, find $(f \circ g)(x)$.
- 9. Given $f(x) = \sqrt{x}$ and g(x) = x + h, find $(f \circ g)(x)$.
- 10. Given $f(x) = \frac{1}{\sqrt{x}}$ and g(x) = x + h, find $(f \circ g)(x)$.

For problems 11-15, evaluate each composite value.

11. If
$$f(x) = 3x - 5$$
 and $g(x) = x^2$, find $(f \circ g)(3)$ and $(g \circ f)(3)$.

12. If
$$f(x) = -9x - 9$$
 and $g(x) = \sqrt{x - 9}$, find $(f \circ g)(10)$ and $(f \circ f)(0)$.

13. If
$$f(x) = -4x + 2$$
 and $g(x) = \sqrt{x - 8}$, find $(f \circ g)(12)$ and $(f \circ f)(2)$.

14. If
$$f(x) = -3x + 4$$
 and $g(x) = x^2$, find $(f \circ g)(-2)$ and $(g \circ f)(-2)$.

15. If
$$f(x) = x^2$$
 and $g(x) = x + h$, find $(f \circ g)(x)$.

For problems 16-20, find g(x).

16. Let
$$(f \circ g)(x) = (2x - 5)^2$$
 and $f(x) = x^2$. Find $g(x)$.

17. Let
$$(f \circ g)(x) = \sqrt{x-5}$$
 and $f(x) = \sqrt{x}$. Find $g(x)$.

18. Let
$$(f \circ g)(x) = (5x + 1)^2 - (5x + 1)$$
 and $f(x) = x^2 - x$. Find $g(x)$.

19. Let
$$(f \circ g)(x) = \sqrt{(-3x - 2)^3}$$
 and $f(x) = \sqrt{x}$. Find $g(x)$.

20. Let
$$(f \circ g)(x) = (x+h)^2 + (x+h)$$
 and $f(x) = x^2 + x$. Find $g(x)$.