The Weekly Kigor

No. 246

"A mathematician is a machine for turning coffee into theorems."

March 9, 2019

15 Problems in Solving Right Triangles (Part 3 of 4)

(Part 3)

12.

$\sin(\theta) = \frac{\sqrt{x^2 - 1}}{x}$	$\cos(\theta) = \frac{1}{x}$	$\tan(\theta) = \frac{\sqrt{x^2 - 1}}{1}$
$\sec(\theta) = \frac{x}{1}$	$\csc(\theta) = \frac{x}{\sqrt{x^2 - 1}}$	$\cot(\theta) = \frac{1}{\sqrt{x^2 - 1}}$

13.

10.		
$\sin(\theta) = \frac{\sqrt{25x^2 - 4}}{5x}$	$\cos(\theta) = \frac{2}{5x}$	$\tan(\theta) = \frac{\sqrt{25x^2 - 4}}{2}$
$\sec(\theta) = \frac{5x}{2}$	$\csc(\theta) = \frac{5x}{\sqrt{25x^2 - 4}}$	$\cot(\theta) = \frac{2}{\sqrt{25x^2 - 4}}$

14.

$\sin(\theta) = \frac{\sqrt{x^4 - 4}}{x^2}$	$\cos(\theta) = \frac{2}{x^2}$	$\tan(\theta) = \frac{\sqrt{x^4 - 4}}{2}$
$\sec(\theta) = \frac{x^2}{2}$	$\csc(\theta) = \frac{x^2}{\sqrt{x^4 - 4}}$	$\cot(\theta) = \frac{2}{\sqrt{x^4 - 4}}$

15.

$\sin(\theta) = \frac{\sqrt{x^2 - a^2}}{x}$	$\cos(\theta) = \frac{a}{x}$	$\tan(\theta) = \frac{\sqrt{x^2 - a^2}}{a}$
$\sec(\theta) = \frac{x}{a}$	$\csc(\theta) = \frac{x}{\sqrt{x^2 - a^2}}$	$\cot(\theta) = \frac{a}{\sqrt{x^2 - a^2}}$

1.
$$x = 3\sin(\theta)$$

$$x = 3\sin(\theta) \implies \frac{x}{3} = \sin(\theta)$$

$$x^2 + u^2 = 3^2 \implies u = \sqrt{9 - x^2}$$

$$\sin(\theta) = \frac{x}{3} \qquad \qquad \csc(\theta) = \frac{3}{x}$$

$$\csc(\theta) = \frac{3}{x}$$

$$\cos(\theta) = \frac{\sqrt{9-x^2}}{3}$$
 $\sec(\theta) = \frac{3}{\sqrt{9-x^2}}$

$$\sec(\theta) = \frac{3}{\sqrt{9-x^2}}$$

$$\tan(\theta) = \frac{x}{\sqrt{9-x^2}}$$
 $\cot(\theta) = \frac{\sqrt{9-x^2}}{x}$

$$\cot(\theta) = \frac{\sqrt{9-x^2}}{x}$$