© hat 相rexly Tingar

15 Problems in Solving Right Triangles (Part 3 of 4)

(Part 4)
2. $x=\sin (\theta)$

$x=\sin (\theta)=1 \sin (\theta) \quad \Rightarrow \quad \frac{x}{1}=\sin (\theta)$

$\sin (\theta)=\frac{x}{1} \quad \csc (\theta)=\frac{1}{x}$
$\cos (\theta)=\frac{\sqrt{1-x^{2}}}{1} \quad \sec (\theta)=\frac{1}{\sqrt{1-x^{2}}}$
$\tan (\theta)=\frac{x}{\sqrt{1-x^{2}}} \quad \cot (\theta)=\frac{\sqrt{1-x^{2}}}{x}$
3. $x=\frac{1}{2} \sin (\theta)$

$$
x=\frac{1}{2} \sin (\theta) \quad \Rightarrow \quad 2 x=\frac{2 x}{1}=\sin (\theta)
$$

$$
(2 x)^{2}+u^{2}=1^{2} \Rightarrow u=\sqrt{1-4 x^{2}}
$$

$$
\begin{array}{ll}
\sin (\theta)=\frac{2 x}{1} & \csc (\theta)=\frac{1}{2 x} \\
\cos (\theta)=\frac{\sqrt{1-4 x^{2}}}{1} & \sec (\theta)=\frac{1}{\sqrt{1-4 x^{2}}}
\end{array}
$$

$$
\tan (\theta)=\frac{2 x}{\sqrt{1-4 x^{2}}} \quad \cot (\theta)=\frac{\sqrt{1-4 x^{2}}}{2 x}
$$

"Only he who never plays, never loses."

