The 相rekld Tingar

No. 248
"A mathematician is a machine for turning coffee into theorems."

15 Problems in Solving Right Triangles (Part 3 of 4)

(Part 5)
5. $x=a \sin (\theta)$

$$
x=a \sin (\theta) \quad \Rightarrow \quad \frac{x}{a}=\sin (\theta)
$$

$u^{2}+x^{2}=a^{2} \quad \Rightarrow \quad u=\sqrt{a^{2}-x^{2}}$

$\sin (\theta)=\frac{x}{a} \quad \csc (\theta)=\frac{a}{x}$
$\cos (\theta)=\frac{\sqrt{a^{2}-x^{2}}}{a} \quad \sec (\theta)=\frac{a}{\sqrt{a^{2}-x^{2}}}$
$\tan (\theta)=\frac{x}{\sqrt{a^{2}-x^{2}}} \quad \cot (\theta)=\frac{\sqrt{a^{2}-x^{2}}}{x}$
7. $x=\tan (\theta)$

$x=\tan (\theta)=1 \tan (\theta) \Rightarrow \frac{x}{1}=\tan (\theta)$

$\sin (\theta)=\frac{x}{\sqrt{x^{2}+1}} \quad \csc (\theta)=\frac{\sqrt{x^{2}+1}}{x}$
$\cos (\theta)=\frac{1}{\sqrt{x^{2}+1}} \quad \sec (\theta)=\frac{\sqrt{x^{2}+1}}{1}$
$\tan (\theta)=\frac{x}{1} \quad \cot (\theta)=\frac{1}{x}$
"Only he who never plays, never loses."
Written and published every Saturday by Richard Shedenhelm
WeeklyRigor@gmail.com

