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16 Problems Concerning the Unit Circle (Part 1 of 2) 
(Part 2) 
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4.  sin(𝜋) 
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5.  cos (
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2
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For any angle 𝜃 in standard 

position and its corresponding 

point (𝑥, 𝑦) on the unit circle, 
(cos(𝜃), sin(𝜃)) = (𝑥, 𝑦).  Hence, 

for 𝜃 = 𝜋, cos(𝜋) = −1. 

For any angle 𝜃 in standard 

position and its corresponding 

point (𝑥, 𝑦) on the unit circle, 
(cos(𝜃), sin(𝜃)) = (𝑥, 𝑦).  Hence, 

for 𝜃 = 𝜋, sin(𝜋) = 0. 

For any angle 𝜃 in standard 

position and its corresponding 

point (𝑥, 𝑦) on the unit circle, 
(cos(𝜃), sin(𝜃)) = (𝑥, 𝑦).  Hence, 

for 𝜃 =
𝜋

2
, cos (

𝜋

2
) = 0. 



6.  sin (
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2
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7.  cos (
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2
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8.  sin (
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For any angle 𝜃 in standard 

position and its corresponding 

point (𝑥, 𝑦) on the unit circle, 
(cos(𝜃), sin(𝜃)) = (𝑥, 𝑦).  Hence, 

for 𝜃 =
𝜋

2
, sin (

𝜋

2
) = 1. 

For any angle 𝜃 in standard 

position and its corresponding 

point (𝑥, 𝑦) on the unit circle, 
(cos(𝜃), sin(𝜃)) = (𝑥, 𝑦).  Hence, 

for 𝜃 =
3𝜋

2
, cos (

3𝜋

2
) = 0. 

For any angle 𝜃 in standard 

position and its corresponding 

point (𝑥, 𝑦) on the unit circle, 
(cos(𝜃), sin(𝜃)) = (𝑥, 𝑦).  Hence, 

for 𝜃 =
3𝜋

2
, sin (

3𝜋

2
) = −1. 


