

16 Problems Concerning the Unit Circle (Part 1 of 2)

(Part 2)
3. $\cos (\pi)$

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos (\theta), \sin (\theta))=(x, y)$. Hence, for $\theta=\pi, \cos (\pi)=-1$.
4. $\sin (\pi)$

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos (\theta), \sin (\theta))=(x, y)$. Hence, for $\theta=\pi, \sin (\pi)=0$.
5. $\cos \left(\frac{\pi}{2}\right)$

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos (\theta), \sin (\theta))=(x, y)$. Hence, for $\theta=\frac{\pi}{2}, \cos \left(\frac{\pi}{2}\right)=0$.
6. $\sin \left(\frac{\pi}{2}\right)$

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos (\theta), \sin (\theta))=(x, y)$. Hence, for $\theta=\frac{\pi}{2}, \sin \left(\frac{\pi}{2}\right)=1$.
7. $\cos \left(\frac{3 \pi}{2}\right)$

8. $\sin \left(\frac{3 \pi}{2}\right)$

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos (\theta), \sin (\theta))=(x, y)$. Hence, for $\theta=\frac{3 \pi}{2}, \sin \left(\frac{3 \pi}{2}\right)=-1$.
"Only he who never plays, never loses."

