The Weekly Rigor

No. 259

"A mathematician is a machine for turning coffee into theorems."

June 8, 2019

16 Problems Concerning the Unit Circle (Part 1 of 2)

(Part 2)

3. $cos(\pi)$

4. $sin(\pi)$

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos(\theta), \sin(\theta)) = (x, y)$. Hence, for $\theta = \pi$, $\cos(\pi) = -1$.

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos(\theta), \sin(\theta)) = (x, y)$. Hence, for $\theta = \pi$, $\sin(\pi) = 0$.

5. $\cos\left(\frac{\pi}{2}\right)$

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos(\theta), \sin(\theta)) = (x, y)$. Hence, for $\theta = \frac{\pi}{2}, \cos\left(\frac{\pi}{2}\right) = 0$. 6. $\sin\left(\frac{\pi}{2}\right)$

7. $\cos\left(\frac{3\pi}{2}\right)$

8. $\sin\left(\frac{3\pi}{2}\right)$

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos(\theta), \sin(\theta)) = (x, y)$. Hence, for $\theta = \frac{\pi}{2}$, $\sin\left(\frac{\pi}{2}\right) = 1$.

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos(\theta), \sin(\theta)) = (x, y)$. Hence, for $\theta = \frac{3\pi}{2}$, $\cos\left(\frac{3\pi}{2}\right) = 0$.

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos(\theta), \sin(\theta)) = (x, y)$. Hence, for $\theta = \frac{3\pi}{2}$, $\sin\left(\frac{3\pi}{2}\right) = -1$.

"Only he who never plays, never loses."

Written and published every Saturday by Richard ShedenhelmWeeklyRigor@gmail.com