

16 Problems Concerning the Unit Circle (Part 1 of 2)

(Part 3)
9. $\sec (0)=\frac{1}{\cos (0)}=\frac{1}{1}=1$.

10. $\sec (\pi)=\frac{1}{\cos (\pi)}=\frac{1}{-1}=-1$.

11. $\csc \left(\frac{\pi}{2}\right)=\frac{1}{\sin \left(\frac{\pi}{2}\right)}=\frac{1}{1}=1$.

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos (\theta), \sin (\theta))=(x, y)$. Hence, for $\theta=0, \sin \left(\frac{\pi}{2}\right)=1$.
12. $\csc \left(\frac{3 \pi}{2}\right)=\frac{1}{\sin \left(\frac{3 \pi}{2}\right)}=\frac{1}{-1}=-1$.

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos (\theta), \sin (\theta))=(x, y)$. Hence, for $\theta=\pi, \sin \left(\frac{3 \pi}{2}\right)=-1$.
13. $\tan (0)=\frac{\sin (0)}{\cos (0)}=\frac{0}{1}=0$.

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos (\theta), \sin (\theta))=(x, y)$. Hence, for $\theta=0, \sin (0)=0$ and $\cos (0)=1$.
15. $\cot \left(\frac{\pi}{2}\right)=\frac{\cos \left(\frac{\pi}{2}\right)}{\sin \left(\frac{\pi}{2}\right)}=\frac{0}{1}=0$.

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos (\theta), \sin (\theta))=(x, y)$. Hence, for $\theta=0, \cos \left(\frac{\pi}{2}\right)=0$ and $\sin \left(\frac{\pi}{2}\right)=1$.
"Only he who never plays, never loses."

