The Weekly Kigor

No. 260

"A mathematician is a machine for turning coffee into theorems."

June 15, 2019

16 Problems Concerning the Unit Circle (Part 1 of 2) (Part 3)

9.
$$\sec(0) = \frac{1}{\cos(0)} = \frac{1}{1} = 1$$
.

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos(\theta), \sin(\theta)) = (x, y)$. Hence, for $\theta = \pi$, $\cos(0) = 1$.

10.
$$\sec(\pi) = \frac{1}{\cos(\pi)} = \frac{1}{-1} = -1$$
.

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos(\theta), \sin(\theta)) = (x, y)$. Hence, for $\theta = 0$, $\cos(\pi) = -1$.

11.
$$\csc\left(\frac{\pi}{2}\right) = \frac{1}{\sin\left(\frac{\pi}{2}\right)} = \frac{1}{1} = 1.$$

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos(\theta), \sin(\theta)) = (x, y)$. Hence, for $\theta = 0$, $\sin(\frac{\pi}{2}) = 1$.

12.
$$\csc\left(\frac{3\pi}{2}\right) = \frac{1}{\sin\left(\frac{3\pi}{2}\right)} = \frac{1}{-1} = -1.$$

13.
$$tan(0) = \frac{\sin(0)}{\cos(0)} = \frac{0}{1} = 0.$$

15.
$$\cot\left(\frac{\pi}{2}\right) = \frac{\cos\left(\frac{\pi}{2}\right)}{\sin\left(\frac{\pi}{2}\right)} = \frac{0}{1} = 0.$$

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos(\theta), \sin(\theta)) = (x, y)$. Hence, for $\theta = \pi$, $\sin(\frac{3\pi}{2}) = -1$.

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos(\theta), \sin(\theta)) = (x, y)$. Hence, for $\theta = 0$, $\sin(0) = 0$ and $\cos(0) = 1$.

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos(\theta), \sin(\theta)) = (x, y)$. Hence, for $\theta = 0$, $\cos(\frac{\pi}{2}) = 0$ and $\sin(\frac{\pi}{2}) = 1$.