The Weekly Rigor

No. 261

"A mathematician is a machine for turning coffee into theorems."

June 22, 2019

10 Problems Concerning the Unit Circle (Part 2 of 2) (Part 1)

(1 art 1)

PROBLEMS

Find the values of the six trigonometric functions of the following angles given in radians. Show (write out) the use of reference angles and the reference triangles to determine the values.

1. $\frac{4\pi}{3}$ 2. $\frac{7\pi}{4}$

3.	11π		3π
	6	4.	4

5. $\frac{5\pi}{3}$ 6. $\frac{5\pi}{6}$

7.
$$\frac{5\pi}{4}$$
 8. $\frac{2\pi}{3}$

9.
$$\frac{7\pi}{6}$$
 10. $\frac{\pi}{3}$

ANSWERS

1. $\sin\left(\frac{4\pi}{3}\right) = -\frac{\sqrt{3}}{2}$	$\cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2}$	$\tan\left(\frac{4\pi}{3}\right) = \sqrt{3}$
$\csc\left(\frac{4\pi}{3}\right) = -\frac{2}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}$	$\sec\left(\frac{4\pi}{3}\right) = -\frac{2}{1} = -2$	$\cot\left(\frac{4\pi}{3}\right) = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$
2. $\sin\left(\frac{7\pi}{4}\right) = -\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$	$\cos\left(\frac{7\pi}{4}\right) = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	$\tan\left(\frac{7\pi}{4}\right) = -\frac{1}{1} = -1$
$\csc\left(\frac{7\pi}{4}\right) = -\frac{\sqrt{2}}{1} = -\sqrt{2}$	$\sec\left(\frac{7\pi}{4}\right) = \frac{\sqrt{2}}{1} = \sqrt{2}$	$\cot\left(\frac{7\pi}{4}\right) = -\frac{1}{1} = -1$
$3. \sin\left(\frac{11\pi}{6}\right) = -\frac{1}{2}$	$\cos\left(\frac{11\pi}{6}\right) = \frac{\sqrt{3}}{2}$	$\tan\left(\frac{11\pi}{6}\right) = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}$
$\csc\left(\frac{11\pi}{6}\right) = -\frac{2}{1} = -2$	$\sec\left(\frac{11\pi}{6}\right) = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$	$\cot\left(\frac{11\pi}{6}\right) = -\frac{\sqrt{3}}{1} = -\sqrt{3}$
4. $\sin\left(\frac{3\pi}{4}\right) = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	$\cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$	$\tan\left(\frac{3\pi}{4}\right) = -\frac{1}{1} = -1$
$\csc\left(\frac{3\pi}{4}\right) = \frac{\sqrt{2}}{1} = \sqrt{2}$	$\sec\left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{1} = -\sqrt{2}$	$\cot\left(\frac{3\pi}{4}\right) = -\frac{1}{1} = -1$
$5. \sin\left(\frac{5\pi}{3}\right) = -\frac{\sqrt{3}}{2}$	$\cos\left(\frac{5\pi}{3}\right) = \frac{1}{2}$	$\tan\left(\frac{5\pi}{3}\right) = -\frac{\sqrt{3}}{1} = -\sqrt{3}$
$\csc\left(\frac{5\pi}{3}\right) = -\frac{2}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}$	$\sec\left(\frac{5\pi}{3}\right) = \frac{2}{1} = 2$	$\cot\left(\frac{5\pi}{3}\right) = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}$
$6. \sin\left(\frac{5\pi}{6}\right) = \frac{1}{2}$	$\cos\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2}$	$\tan\left(\frac{5\pi}{6}\right) = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}$
$\csc\left(\frac{5\pi}{6}\right) = \frac{2}{1} = 2$	$\sec\left(\frac{5\pi}{6}\right) = -\frac{2}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}$	$\cot\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{1} = -\sqrt{3}$
7. $\sin\left(\frac{5\pi}{4}\right) = -\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$	$\cos\left(\frac{5\pi}{4}\right) = -\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$	$\tan\left(\frac{5\pi}{4}\right) = \frac{1}{1} = 1$
$\csc\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{1} = -\sqrt{2}$	$\sec\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{1} = -\sqrt{2}$	$\cot\left(\frac{5\pi}{4}\right) = \frac{1}{1} = 1$
8. $\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2}$	$\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$	$\tan\left(\frac{2\pi}{3}\right) = -\frac{\sqrt{3}}{1} = -\sqrt{3}$
$\csc\left(\frac{2\pi}{3}\right) = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$	$\sec\left(\frac{2\pi}{3}\right) = -\frac{2}{1} = -2$	$\cot\left(\frac{2\pi}{3}\right) = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}$
9. $\sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2}$	$\cos\left(\frac{7\pi}{6}\right) = -\frac{\sqrt{3}}{2}$	$\tan\left(\frac{7\pi}{6}\right) = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$
$\csc\left(\frac{7\pi}{6}\right) = -\frac{2}{1} = -2$	$\sec\left(\frac{7\pi}{6}\right) = -\frac{2}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}$	$\cot\left(\frac{7\pi}{6}\right) = \frac{\sqrt{3}}{1} = \sqrt{3}$
10. $\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$	$\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$	$\tan\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{1} = \sqrt{3}$
$\csc\left(\frac{\pi}{3}\right) = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$	$\sec\left(\frac{\pi}{3}\right) = \frac{2}{1} = -2$	$\cot\left(\frac{\pi}{3}\right) = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$

"Only he who never plays, never loses."

Written and published every Saturday by Richard Shedenhelm