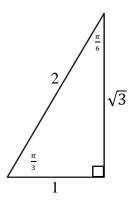
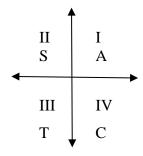
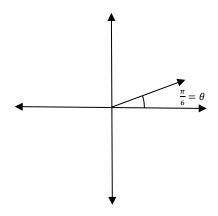
The Weekly Kigor

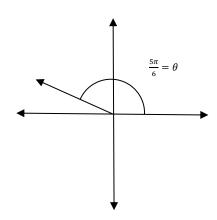
No. 265

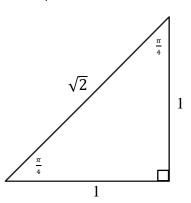

"A mathematician is a machine for turning coffee into theorems."

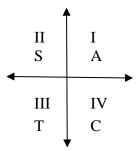
July 20, 2019

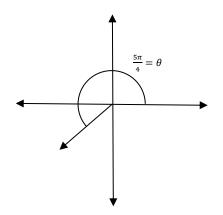

28 Problems Solving Simple Trigonometric Equations (Type I) (Part 2)

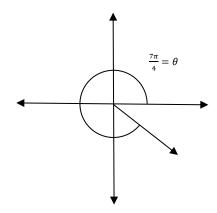

SELECTED SOLUTIONS


1. $2\sin(\theta) - 1 = 0 \implies \sin(\theta) = \frac{1}{2}$. Consulting the 30-60-90 reference triangle,


we see that $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$. Hence, θ_R , the reference angle for θ , is $\frac{\pi}{6}$. But sine is positive in Quadrants I and II. Therefore, $\theta = \frac{\pi}{6}$ (QI) and $\theta = \pi - \theta_R = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$ (QII).






7. $\sqrt{2}\sin(\theta) + 1 = 0 \implies \sin(\theta) = \frac{-1}{\sqrt{2}}$. Consulting the 45-45-90 reference triangle,

we see that $\sin\left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$. Hence, θ_R , the reference angle for θ , is $\frac{\pi}{4}$. But sine is negative in Quadrants III and IV. Therefore, $\theta=\pi+\theta_R=\pi+\frac{\pi}{4}=\frac{5\pi}{4}$ (QIII) and $\theta=2\pi-\theta_R=2\pi-\frac{\pi}{4}=\frac{7\pi}{4}$ (QIV).

