The Weekly Rigor

No. 266

"A mathematician is a machine for turning coffee into theorems."

July 27, 2019

28 Problems Solving Simple Trigonometric Equations (Type I) (Part 3)

9. $2\cos(\theta) + \sqrt{2} = 0 \implies \cos(\theta) = \frac{-\sqrt{2}}{2} = \frac{-1}{\sqrt{2}}$. Consulting the 45-45-90 reference triangle,

13. $\sin(\theta) - 1 = 0 \implies \sin(\theta) = 1$.

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos(\theta), \sin(\theta)) = (x, y)$. By inspection, $\left(\cos\left(\frac{\pi}{2}\right), \sin\left(\frac{\pi}{2}\right)\right) =$ (0,1), i.e., $\sin\left(\frac{\pi}{2}\right) = 1$. Therefore, $\theta = \frac{\pi}{2}$.

19. $\cos(\theta) + 1 = 0 \implies \cos(\theta) = -1$.

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos(\theta), \sin(\theta)) = (x, y)$. By inspection, $(\cos(\pi), \sin(\pi)) =$ (-1,0), i.e., $\cos(\pi) = -1$. Therefore, $\theta = \pi$.

"Only he who never plays, never loses."

Written and published every Saturday by Richard Shedenhelm