The 相rekld Tingar

28 Problems Solving Simple Trigonometric Equations (Type I)
 (Part 3)

9. $2 \cos (\theta)+\sqrt{2}=0 \Rightarrow \cos (\theta)=\frac{-\sqrt{2}}{2}=\frac{-1}{\sqrt{2}}$. Consulting the 45-45-90 reference triangle,

we see that $\cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$. Hence, θ_{R}, the reference angle for θ, is $\frac{\pi}{4}$.
But cosine is negative in Quadrants II and III. Therefore,
$\theta=\pi-\theta_{R}=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}(\mathrm{QII})$ and $\theta=\pi+\theta_{R}=\pi+\frac{\pi}{4}=\frac{5 \pi}{4}(\mathrm{QIII})$.

10. $\sin (\theta)-1=0 \Rightarrow \sin (\theta)=1$.

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos (\theta), \sin (\theta))=(x, y)$. By inspection, $\left(\cos \left(\frac{\pi}{2}\right), \sin \left(\frac{\pi}{2}\right)\right)=$ $(0,1)$, i.e., $\sin \left(\frac{\pi}{2}\right)=1$. Therefore, $\theta=\frac{\pi}{2}$.
19. $\cos (\theta)+1=0 \quad \Rightarrow \quad \cos (\theta)=-1$.

For any angle θ in standard position and its corresponding point (x, y) on the unit circle, $(\cos (\theta), \sin (\theta))=(x, y)$. Вy inspection, $(\cos (\pi), \sin (\pi))=$ $(-1,0)$, i.e., $\cos (\pi)=-1$. Therefore, $\theta=\pi$.
"Only he who never plays, never loses."

