The 相rekld Tingar

28 Problems Solving Simple Trigonometric Equations (Type I) (Part 5)

27. $4 \cos ^{2}(\theta)-1=0 \quad \Rightarrow \quad \cos ^{2}(\theta)=\frac{1}{4} \quad \Rightarrow \quad \cos (\theta)= \pm \sqrt{\frac{1}{4}}= \pm \frac{1}{2}$.

Consulting the 30-60-90 reference triangle,

we see that $\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}$. Hence, θ_{R}, the reference angle for θ, is $\frac{\pi}{3}$.
But cosine is positive in Quadrants I and IV. Therefore, $\theta=\frac{\pi}{3}$ (QI)
and $\theta=2 \pi-\theta_{R}=2 \pi-\frac{\pi}{3}=\frac{5 \pi}{3}$ (QIV). Furthermore, cosine is

negative in Quadrants II and III. Therefore, $\theta=\pi-\theta_{R}=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$ (QII)
and $\theta=\pi+\theta_{R}=\pi+\frac{\pi}{3}=\frac{4 \pi}{3}(\mathrm{QIII})$.

28. $2 \cos (\theta)-\sqrt{3}=0 \Rightarrow \cos (\theta)=\frac{\sqrt{3}}{2}$. Consulting the 30-60-90 reference triangle,

we see that $\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$. Hence, θ_{R}, the reference angle for θ, is $\frac{\pi}{6}$. But cosine is positive in Quadrants I and IV. Therefore, $\theta=\frac{\pi}{6}$ (QI) and $\theta=2 \pi-\theta_{R}=2 \pi-\frac{\pi}{6}=\frac{11 \pi}{6}$ (QIV).

C

"Only he who never plays, never loses."

