

28 Problems Solving Simple Trigonometric Equations (Type III) (Part 3)

21. $\tan (\theta)-1=0 \Rightarrow \tan (\theta)=1$. Consulting the 45-45-90 reference triangle,

we see that $\tan \left(\frac{\pi}{4}\right)=\frac{1}{1}=1$. Hence, θ_{R}, the reference angle for θ, is $\frac{\pi}{4}$. But tangent is positive in Quadrants I and III. Therefore, $\theta=\frac{\pi}{4}(\mathrm{QI})$ and $\theta=\pi+\theta_{R}=\pi+\frac{\pi}{4}=\frac{5 \pi}{4}(\mathrm{QIII})$.

22. $\cot ^{2}(\theta)-3=0 \quad \Rightarrow \quad \cot ^{2}(\theta)=3 \quad \Rightarrow \quad \frac{1}{\tan ^{2}(\theta)}=3 \quad \Rightarrow \quad \tan ^{2}(\theta)=\frac{1}{3} \quad \Rightarrow$ $\Rightarrow \tan (\theta)= \pm \frac{1}{\sqrt{3}}$. Consulting the 30-60-90 reference triangle,

we see that $\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}}$. Hence, θ_{R}, the reference angle for θ, is $\frac{\pi}{6}$. But tangent is positive in Quadrants I and III. Therefore, $\theta=\frac{\pi}{6}(\mathrm{QI})$ and $\theta=\pi+\theta_{R}=\pi+\frac{\pi}{6}=\frac{7 \pi}{6}$ (QII). Furthermore, tangent is
 negative in Quadrants II and IV. Therefore, $\theta=\pi-\theta_{R}=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}$ (QII) and $\theta=2 \pi-\theta_{R}=2 \pi-\frac{\pi}{6}=\frac{11 \pi}{6}$ (QIV).

"Only he who never plays, never loses."
