

12 Problems Solving Composite Trigonometric Equations (Type I)

(Part 2)

SELECTED SOLUTIONS

1. $4 \sin \left(\frac{1}{2} x\right)-2=0 \Rightarrow \sin \left(\frac{1}{2} x\right)=\frac{2}{4}=\frac{1}{2}$. According to $W R$ no. 265 , problem 1 , $\sin (\theta)=\frac{1}{2}$ for $\theta=\frac{\pi}{6}$ and $\theta=\frac{5 \pi}{6}$.

Regarding $\theta=\frac{\pi}{6}$, set $\frac{1}{2} x=\theta$. Hence, $\frac{1}{2} x=\frac{\pi}{6}$. Solving for x, we have $x=\frac{2 \pi}{6}=\frac{\pi}{3}$. Perhaps $\theta+2 \pi=\frac{\pi}{6}+2 \pi$ will also provide a basis for finding solutions for x. $\frac{\pi}{6}+2 \pi=\frac{\pi}{6}+\frac{12 \pi}{6}=\frac{13 \pi}{6}$. Setting $\frac{1}{2} x=\frac{13 \pi}{6}$ and solving for x, we have $x=\frac{26 \pi}{6}=\frac{13 \pi}{3}$. But $\frac{13 \pi}{3}>\frac{6 \pi}{3}=2 \pi$ is outside the interval $[0,2 \pi)$.

Regarding $\theta=\frac{5 \pi}{6}$, set $\frac{1}{2} x=\theta$. Hence, $\frac{1}{2} x=\frac{5 \pi}{6}$. Solving for x, we have $x=\frac{10 \pi}{6}=\frac{5 \pi}{3}$. Perhaps $\theta+2 \pi=\frac{5 \pi}{6}+2 \pi$ will also provide a basis for finding solutions for x.
$\frac{5 \pi}{6}+2 \pi=\frac{5 \pi}{6}+\frac{12 \pi}{6}=\frac{17 \pi}{6}$. Setting $\frac{1}{2} x=\frac{17 \pi}{6}$ and solving for x, we have $x=\frac{34 \pi}{6}=\frac{17 \pi}{3}$. But $\frac{17 \pi}{3}>\frac{6 \pi}{3}=2 \pi$ is outside the interval $[0,2 \pi)$.

Therefore, the only solutions for x are $\frac{\pi}{3}, \frac{5 \pi}{3}$.
Check: $4 \sin \left(\frac{1}{2} \cdot \frac{\pi}{3}\right)-2=4 \sin \left(\frac{\pi}{6}\right)-2=4 \cdot \frac{1}{2}-2=2-2=0$. $4 \sin \left(\frac{1}{2} \cdot \frac{5 \pi}{3}\right)-2=4 \sin \left(\frac{5 \pi}{6}\right)-2=4 \cdot \frac{1}{2}-2=2-2=0$.
3. $\sqrt{2} \sin (2 x)+1=0 \Rightarrow \sin (2 x)=\frac{-1}{\sqrt{2}}$. According to $W R$ no. 265 , problem 7 , $\sin (\theta)=\frac{-1}{\sqrt{2}}$ for $\theta=\frac{5 \pi}{4}$ and $\theta=\frac{7 \pi}{4}$.

Regarding $\theta=\frac{5 \pi}{4}$, set $2 x=\theta$. Hence, $2 x=\frac{5 \pi}{4}$. Solving for x, we have $x=\frac{5 \pi}{8}$.
Perhaps $\theta+2 \pi=\frac{5 \pi}{4}+2 \pi$ will also provide a basis for finding solutions for x. $\frac{5 \pi}{4}+2 \pi=\frac{5 \pi}{4}+\frac{8 \pi}{4}=\frac{13 \pi}{4}$. Setting $2 x=\frac{13 \pi}{4}$ and solving for x, we have $x=\frac{13 \pi}{8}$. Perhaps $\theta+4 \pi=\frac{5 \pi}{4}+4 \pi$ will also provide a basis for finding solutions for x. $\frac{5 \pi}{4}+4 \pi=\frac{5 \pi}{4}+\frac{16 \pi}{4}=\frac{21 \pi}{4}$. Setting $2 x=\frac{21 \pi}{4}$ and solving for x, we have $x=\frac{21 \pi}{8}$. But $\frac{21 \pi}{8}>\frac{16 \pi}{8}=2 \pi$ is outside the interval $[0,2 \pi)$.

Regarding $\theta=\frac{7 \pi}{4}$, set $2 x=\theta$. Hence, $2 x=\frac{7 \pi}{4}$. Solving for x, we have $x=\frac{7 \pi}{8}$. Perhaps $\theta+2 \pi=\frac{7 \pi}{4}+2 \pi$ will also provide a basis for finding solutions for x. $\frac{7 \pi}{4}+2 \pi=\frac{7 \pi}{4}+\frac{8 \pi}{4}=\frac{15 \pi}{4}$. Setting $2 x=\frac{15 \pi}{4}$ and solving for x, we have $x=\frac{15 \pi}{8}$.
Perhaps $\theta+4 \pi=\frac{7 \pi}{4}+4 \pi$ will also provide a basis for finding solutions for x.
$\frac{7 \pi}{4}+4 \pi=\frac{7 \pi}{4}+\frac{16 \pi}{4}=\frac{23 \pi}{4}$. Setting $2 x=\frac{23 \pi}{4}$ and solving for x, we have $x=\frac{23 \pi}{8}$.
But $\frac{23 \pi}{8}>\frac{16 \pi}{8}=2 \pi$ is outside the interval $[0,2 \pi)$.
Therefore, the only solutions for x are $\frac{5 \pi}{8}, \frac{7 \pi}{8}, \frac{13 \pi}{8}, \frac{15 \pi}{8}$.
Check: $\sqrt{2} \sin \left(2 \cdot \frac{5 \pi}{8}\right)+1=\sqrt{2} \sin \left(\frac{5 \pi}{4}\right)+1=\sqrt{2} \cdot \frac{-1}{\sqrt{2}}+1=-1+1=0 . \checkmark$
$\sqrt{2} \sin \left(2 \cdot \frac{7 \pi}{8}\right)+1=\sqrt{2} \sin \left(\frac{7 \pi}{4}\right)+1=\sqrt{2} \cdot \frac{-1}{\sqrt{2}}+1=-1+1=0 . \checkmark$
$\sqrt{2} \sin \left(2 \cdot \frac{13 \pi}{8}\right)+1=\sqrt{2} \sin \left(\frac{13 \pi}{4}\right)+1=\sqrt{2} \sin \left(\frac{5 \pi}{4}\right)+1=\sqrt{2} \cdot \frac{-1}{\sqrt{2}}+1=-1+1=0 . \checkmark$
$\sqrt{2} \sin \left(2 \cdot \frac{15 \pi}{8}\right)+1=\sqrt{2} \sin \left(\frac{15 \pi}{4}\right)+1=\sqrt{2} \sin \left(\frac{7 \pi}{4}\right)+1=\sqrt{2} \cdot \frac{-1}{\sqrt{2}}+1=-1+1=0 . \checkmark$
12. $\sin \left(\frac{x}{2}\right)-1=0 \Rightarrow \sin \left(\frac{x}{2}\right)=1$. According to $W R$ no. 266, problem 13, $\sin (\theta)=1$ for $\theta=\frac{\pi}{2}$.

Regarding $\theta=\frac{\pi}{2}$, set $\frac{x}{2}=\theta$. Hence, $\frac{x}{2}=\frac{\pi}{2}$. Solving for x, we have $x=\frac{2 \pi}{2}=\pi$. Perhaps $\theta+2 \pi=\frac{\pi}{2}+2 \pi$ will also provide a basis for finding solutions for x. $\frac{\pi}{2}+2 \pi=\frac{\pi}{2}+\frac{4 \pi}{2}=\frac{5 \pi}{2}$. Setting $\frac{x}{2}=\frac{5 \pi}{2}$ and solving for x, we have $x=\frac{10 \pi}{2}=5 \pi$.
But $5 \pi>2 \pi$ is outside the interval $[0,2 \pi)$.
Therefore, the only solution for x is π.
Check: $\sin \left(\frac{\pi}{2}\right)-1=1-1=0 . \checkmark$

