

12 Problems Solving Composite Trigonometric Equations (Type II)

(Part 2)

SELECTED SOLUTIONS

1. $\csc \left(\frac{x}{3}\right)-2=0 \Rightarrow \csc \left(\frac{x}{3}\right)=2 \quad \Rightarrow \quad \frac{1}{\sin \left(\frac{x}{3}\right)}=2 \quad \Rightarrow \quad \sin \left(\frac{x}{3}\right)=\frac{1}{2}$.

According to $W R$ no. 265, problem $1, \sin (\theta)=\frac{1}{2}$ for $\theta=\frac{\pi}{6}$ and $\theta=\frac{5 \pi}{6}$.
Regarding $\theta=\frac{\pi}{6}$, set $\frac{x}{3}=\theta$. Hence, $\frac{x}{3}=\frac{\pi}{6}$. Solving for x, we have $x=\frac{3 \pi}{6}=\frac{\pi}{2}$. Perhaps $\theta+2 \pi=\frac{\pi}{6}+2 \pi$ will also provide a basis for finding solutions for x.
$\frac{\pi}{6}+2 \pi=\frac{\pi}{6}+\frac{12 \pi}{6}=\frac{13 \pi}{6}$. Setting $\frac{x}{3}=\frac{13 \pi}{6}$ and solving for x, we have $x=\frac{39 \pi}{6}=\frac{13 \pi}{2}$.
But $\frac{13 \pi}{2}>\frac{4 \pi}{2}=2 \pi$ is outside the interval $[0,2 \pi)$.
Therefore, the only solution for x is $\frac{\pi}{2}$.
Check: $\csc \left(\frac{1}{3} \cdot \frac{\pi}{2}\right)-2=\csc \left(\frac{\pi}{6}\right)-2=\frac{1}{\sin \left(\frac{\pi}{6}\right)}-2=\frac{1}{\left(\frac{1}{2}\right)}-2=2-2=0$.
3. $\sqrt{3} \sec (2 x)-2=0 \quad \Rightarrow \quad \sec (2 x)=\frac{2}{\sqrt{3}} \quad \Rightarrow \quad \frac{1}{\cos (2 x)}=\frac{2}{\sqrt{3}} \quad \Rightarrow \quad \cos (2 x)=\frac{\sqrt{3}}{2}$.

According to $W R$ no. 268, problem $28 \cos (\theta)=\frac{\sqrt{3}}{2}$ for $\theta=\frac{\pi}{6}$ and $\theta=\frac{11 \pi}{6}$.
Regarding $\theta=\frac{\pi}{6}$, set $2 x=\theta$. Hence, $2 x=\frac{\pi}{6}$. Solving for x, we have $x=\frac{\pi}{12}$.
Perhaps $\theta+2 \pi=\frac{\pi}{6}+2 \pi$ will also provide a basis for finding solutions for x. $\frac{\pi}{6}+2 \pi=\frac{\pi}{6}+\frac{12 \pi}{6}=\frac{13 \pi}{6}$. Setting $2 x=\frac{13 \pi}{6}$ and solving for x, we have $x=\frac{13 \pi}{12}$. Perhaps $\theta+4 \pi=\frac{\pi}{6}+4 \pi$ will also provide a basis for finding solutions for x. $\frac{\pi}{6}+4 \pi=\frac{\pi}{6}+\frac{24 \pi}{6}=\frac{25 \pi}{6}$. Setting $2 x=\frac{25 \pi}{6}$ and solving for x, we have $x=\frac{25 \pi}{12}$. But $\frac{25 \pi}{12}>\frac{24 \pi}{12}=2 \pi$ is outside the interval $[0,2 \pi)$.

Regarding $\theta=\frac{11 \pi}{6}$, set $2 x=\theta$. Hence, $2 x=\frac{11 \pi}{6}$. Solving for x, we have $x=\frac{11 \pi}{12}$. Perhaps $\theta+2 \pi=\frac{11 \pi}{6}+2 \pi$ will also provide a basis for finding solutions for x.
$\frac{11 \pi}{6}+2 \pi=\frac{11 \pi}{6}+\frac{12 \pi}{6}=\frac{23 \pi}{6}$. Setting $2 x=\frac{23 \pi}{6}$ and solving for x, we have $x=\frac{23 \pi}{12}$.
Perhaps $\theta+4 \pi=\frac{11 \pi}{6}+4 \pi$ will also provide a basis for finding solutions for x.
$\frac{11 \pi}{6}+4 \pi=\frac{11 \pi}{6}+\frac{24 \pi}{6}=\frac{35 \pi}{6}$. Setting $2 x=\frac{35 \pi}{6}$ and solving for x, we have $x=\frac{35 \pi}{12}$.
But $\frac{35 \pi}{12}>\frac{24 \pi}{12}=2 \pi$ is outside the interval $[0,2 \pi)$.
Therefore, the only solutions for x are $\frac{\pi}{12}, \frac{11 \pi}{12}, \frac{13 \pi}{12}, \frac{23 \pi}{12}$.
Check: $\sqrt{3} \sec \left(2 \cdot \frac{\pi}{12}\right)-2=\sqrt{3} \sec \left(\frac{\pi}{6}\right)-2=\frac{\sqrt{3}}{\cos \left(\frac{\pi}{6}\right)}-2=\frac{\sqrt{3}}{\left(\frac{\sqrt{3}}{2}\right)}-2=2-2=0$.
$\sqrt{3} \sec \left(2 \cdot \frac{11 \pi}{12}\right)-2=\sqrt{3} \sec \left(\frac{11 \pi}{6}\right)-2=\frac{\sqrt{3}}{\cos \left(\frac{11 \pi}{6}\right)}-2=\frac{\sqrt{3}}{\left(\frac{\sqrt{3}}{2}\right)}-2=0$.
$\sqrt{3} \sec \left(2 \cdot \frac{13 \pi}{12}\right)-2=\sqrt{3} \sec \left(\frac{13 \pi}{6}\right)-2=\frac{\sqrt{3}}{\cos \left(\frac{13 \pi}{6}\right)}-2=\frac{\sqrt{3}}{\cos \left(\frac{\pi}{6}\right)}-2=\frac{\sqrt{3}}{\left(\frac{\sqrt{3}}{2}\right)}-2=0 . \checkmark$
$\sqrt{3} \sec \left(2 \cdot \frac{23 \pi}{12}\right)-2=\sqrt{3} \sec \left(\frac{23 \pi}{6}\right)-2=\frac{\sqrt{3}}{\cos \left(\frac{23 \pi}{6}\right)}-2=\frac{\sqrt{3}}{\cos \left(\frac{11 \pi}{6}\right)}-2=\frac{\sqrt{3}}{\left(\frac{\sqrt{3}}{2}\right)}-2=0$.
"Only he who never plays, never loses."

