## 

## 12 Problems Solving Composite Trigonometric Equations (Type II)

(Part 3)
6. $\csc (3 x)+\sqrt{2}=0 \quad \Rightarrow \quad \csc (3 x)=-\sqrt{2} \quad \Rightarrow \quad \frac{1}{\sin (3 x)}=-\sqrt{2} \quad \Rightarrow \quad \sin (3 x)=\frac{-1}{\sqrt{2}}$.

According to $W R$ no. 265, problem $7, \sin (\theta)=\frac{-1}{\sqrt{2}}$ for $\theta=\frac{5 \pi}{4}$ and $\theta=\frac{7 \pi}{4}$.
Regarding $\theta=\frac{5 \pi}{4}$, set $3 x=\theta$. Hence, $3 x=\frac{5 \pi}{4}$. Solving for $x$, we have $x=\frac{5 \pi}{12}$.
Perhaps $\theta+2 \pi=\frac{5 \pi}{4}+2 \pi$ will also provide a basis for finding solutions for $x$.
$\frac{5 \pi}{4}+2 \pi=\frac{5 \pi}{4}+\frac{8 \pi}{4}=\frac{13 \pi}{4}$. Setting $3 x=\frac{13 \pi}{4}$ and solving for $x$, we have $x=\frac{13 \pi}{12}$.
Perhaps $\theta+4 \pi=\frac{5 \pi}{4}+4 \pi$ will also provide a basis for finding solutions for $x$.
$\frac{5 \pi}{4}+4 \pi=\frac{5 \pi}{4}+\frac{16 \pi}{4}=\frac{21 \pi}{4}$. Setting $3 x=\frac{21 \pi}{4}$ and solving for $x$, we have $x=\frac{21 \pi}{12}$.
Perhaps $\theta+6 \pi=\frac{5 \pi}{4}+6 \pi$ will also provide a basis for finding solutions for $x$.
$\frac{5 \pi}{4}+6 \pi=\frac{5 \pi}{4}+\frac{24 \pi}{4}=\frac{29 \pi}{4}$. Setting $3 x=\frac{29 \pi}{4}$ and solving for $x$, we have $x=\frac{29 \pi}{12}$.
But $\frac{29 \pi}{12}>\frac{24 \pi}{12}=2 \pi$ is outside the interval $[0,2 \pi)$.
Regarding $\theta=\frac{7 \pi}{4}$, set $3 x=\theta$. Hence, $3 x=\frac{7 \pi}{4}$. Solving for $x$, we have $x=\frac{7 \pi}{12}$.
Perhaps $\theta+2 \pi=\frac{7 \pi}{4}+2 \pi$ will also provide a basis for finding solutions for $x$.
$\frac{7 \pi}{4}+2 \pi=\frac{7 \pi}{4}+\frac{8 \pi}{4}=\frac{15 \pi}{4}$. Setting $3 x=\frac{15 \pi}{4}$ and solving for $x$, we have $x=\frac{15 \pi}{12}=\frac{5 \pi}{4}$.
Perhaps $\theta+4 \pi=\frac{7 \pi}{4}+4 \pi$ will also provide a basis for finding solutions for $x$.
$\frac{7 \pi}{4}+4 \pi=\frac{7 \pi}{4}+\frac{16 \pi}{4}=\frac{23 \pi}{4}$. Setting $3 x=\frac{23 \pi}{4}$ and solving for $x$, we have $x=\frac{23 \pi}{12}$.
Perhaps $\theta+6 \pi=\frac{7 \pi}{4}+6 \pi$ will also provide a basis for finding solutions for $x$.
$\frac{7 \pi}{4}+6 \pi=\frac{7 \pi}{4}+\frac{24 \pi}{4}=\frac{31 \pi}{4}$. Setting $3 x=\frac{31 \pi}{4}$ and solving for $x$, we have $x=\frac{31 \pi}{12}$.
But $\frac{31 \pi}{12}>\frac{24 \pi}{12}=2 \pi$ is outside the interval $[0,2 \pi)$.
Therefore, the only solutions for $x$ are $\frac{5 \pi}{12}, \frac{7 \pi}{12}, \frac{13 \pi}{12}, \frac{15 \pi}{12}, \frac{21 \pi}{12}, \frac{23 \pi}{12}$.
Check: $\csc \left(3 \cdot \frac{5 \pi}{12}\right)+\sqrt{2}=\csc \left(\frac{5 \pi}{4}\right)+\sqrt{2}=\frac{1}{\sin \left(\frac{5 \pi}{4}\right)}+\sqrt{2}=\frac{1}{\left(\frac{-1}{\sqrt{2}}\right)}+\sqrt{2}=0$.
$\csc \left(3 \cdot \frac{7 \pi}{12}\right)+\sqrt{2}=\csc \left(\frac{7 \pi}{4}\right)+\sqrt{2}=\frac{1}{\sin \left(\frac{7 \pi}{4}\right)}+\sqrt{2}=\frac{1}{\left(\frac{-1}{\sqrt{2}}\right)}+\sqrt{2}=-\sqrt{2}+\sqrt{2}=0$.
$\csc \left(3 \cdot \frac{13 \pi}{12}\right)+\sqrt{2}=\csc \left(\frac{13 \pi}{4}\right)+\sqrt{2}=\frac{1}{\sin \left(\frac{13 \pi}{4}\right)}+\sqrt{2}=\frac{1}{\sin \left(\frac{5 \pi}{4}\right)}+\sqrt{2}=\frac{1}{\left(\frac{-1}{\sqrt{2}}\right)}+\sqrt{2}=0$.
$\csc \left(3 \cdot \frac{15 \pi}{12}\right)+\sqrt{2}=\csc \left(\frac{15 \pi}{4}\right)+\sqrt{2}=\frac{1}{\sin \left(\frac{15 \pi}{4}\right)}+\sqrt{2}=\frac{1}{\sin \left(\frac{7 \pi}{4}\right)}+\sqrt{2}=\frac{1}{\left(\frac{-1}{\sqrt{2}}\right)}+\sqrt{2}=0$.
$\csc \left(3 \cdot \frac{21 \pi}{12}\right)+\sqrt{2}=\csc \left(\frac{21 \pi}{4}\right)+\sqrt{2}=\frac{1}{\sin \left(\frac{21 \pi}{4}\right)}+\sqrt{2}=\frac{1}{\sin \left(\frac{5 \pi}{4}\right)}+\sqrt{2}=\frac{1}{\left(\frac{-1}{\sqrt{2}}\right)}+\sqrt{2}=0$.
$\csc \left(3 \cdot \frac{23 \pi}{12}\right)+\sqrt{2}=\csc \left(\frac{23 \pi}{4}\right)+\sqrt{2}=\frac{1}{\sin \left(\frac{23 \pi}{4}\right)}+\sqrt{2}=\frac{1}{\sin \left(\frac{7 \pi}{4}\right)}+\sqrt{2}=\frac{1}{\left(\frac{-1}{\sqrt{2}}\right)}+\sqrt{2}=0$.
8. $\sec (5 x)+1=0 \Rightarrow \sec (5 x)=-1 \quad \Rightarrow \quad \frac{1}{\cos (5 x)}=-1 \quad \Rightarrow \quad \cos (5 x)=-1$.

According to $W R$ no. 266, problem $19, \cos (\theta)=-1$ for $\theta=\pi$.
Regarding $\theta=\pi$, set $5 x=\theta$. Hence, $5 x=\pi$. Solving for $x$, we have $x=\frac{\pi}{5}$.
Perhaps $\theta+2 \pi=\pi+2 \pi$ will also provide a basis for finding solutions for $x$.
$\pi+2 \pi=3 \pi$. Setting $5 x=3 \pi$ and solving for $x$, we have $x=\frac{3 \pi}{5}$.
Perhaps $\theta+4 \pi=\pi+4 \pi$ will also provide a basis for finding solutions for $x$.
$\pi+4 \pi=5 \pi$. Setting $5 x=5 \pi$ and solving for $x$, we have $x=\frac{5 \pi}{5}=\pi$.
Perhaps $\theta+6 \pi=\pi+6 \pi$ will also provide a basis for finding solutions for $x$.
$\pi+6 \pi=7 \pi$. Setting $5 x=7 \pi$ and solving for $x$, we have $x=\frac{7 \pi}{5}$.
Perhaps $\theta+8 \pi=\pi+8 \pi$ will also provide a basis for finding solutions for $x$.
$\pi+8 \pi=9 \pi$. Setting $5 x=9 \pi$ and solving for $x$, we have $x=\frac{9 \pi}{5}$.
Perhaps $\theta+10 \pi=\pi+10 \pi$ will also provide a basis for finding solutions for $x$.
$\pi+10 \pi=11 \pi$. Setting $5 x=11 \pi$ and solving for $x$, we have $x=\frac{11 \pi}{5}$.
But $\frac{11 \pi}{5}>\frac{10 \pi}{5}=2 \pi$ is outside the interval $[0,2 \pi)$.
Therefore, the only solutions for $x$ are $\frac{\pi}{5}, \frac{3 \pi}{5}, \frac{5 \pi}{5}, \frac{7 \pi}{5}, \frac{9 \pi}{5}, \frac{11 \pi}{5}$.
Check: $\csc \left(\frac{\pi}{2}\right)-1=\frac{1}{\sin \left(\frac{\pi}{2}\right)}-1=\frac{1}{1}-1=1-1=0 . \checkmark$
9. $\csc \left(\frac{x}{2}\right)-1=0 \Rightarrow \csc \left(\frac{x}{2}\right)=1 \Rightarrow \frac{1}{\sin \left(\frac{x}{2}\right)}=1 \Rightarrow \sin \left(\frac{x}{2}\right)=1$.

According to $W R$ no. 266 , problem $13, \sin (\theta)=1$ for $\theta=\frac{\pi}{2}$.
Regarding $\theta=\frac{\pi}{2}$, set $\frac{x}{2}=\theta$. Hence, $\frac{x}{2}=\frac{\pi}{2}$. Solving for $x$, we have $x=\frac{2 \pi}{2}=\pi$. Perhaps $\theta+2 \pi=\frac{\pi}{2}+2 \pi$ will also provide a basis for finding solutions for $x$.
$\frac{\pi}{2}+2 \pi=\frac{\pi}{2}+\frac{4 \pi}{2}=\frac{5 \pi}{2}$. Setting $\frac{x}{2}=\frac{5 \pi}{2}$ and solving for $x$, we have $x=\frac{10 \pi}{2}=5 \pi$.
But $5 \pi>2 \pi$ is outside the interval $[0,2 \pi)$.
Therefore, the only solution for $x$ is $\pi$.
Check: $\csc \left(\frac{\pi}{2}\right)-1=\frac{1}{\sin \left(\frac{\pi}{2}\right)}-1=\frac{1}{1}-1=1-1=0 . \checkmark$
"Only he who never plays, never loses."

