The Weekly Rigor

No. 280

"A mathematician is a machine for turning coffee into theorems."

November 2, 2019

12 Problems Solving Composite Trigonometric Equations (Type III) (Part 2)

SELECTED SOLUTIONS

1. $3\tan(2x) - \sqrt{3} = 0 \implies \tan(2x) = \frac{\sqrt{3}}{3} = \frac{\sqrt{3}}{3} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{3}{3\sqrt{3}} = \frac{1}{\sqrt{3}}$ According to WR no. 272, problem 1, $\tan(\theta) = \frac{1}{\sqrt{3}}$ for $\theta = \frac{\pi}{6}$ and $\theta = \frac{7\pi}{6}$. Regarding $\theta = \frac{\pi}{6}$, set $2x = \theta$. Hence, $2x = \frac{\pi}{6}$. Solving for x, we have $x = \frac{\pi}{12}$. Perhaps $\theta + 2\pi = \frac{\pi}{6} + 2\pi$ will also provide a basis for finding solutions for x. $\frac{\pi}{6} + 2\pi = \frac{\pi}{6} + \frac{12\pi}{6} = \frac{13\pi}{6}$. Setting $2x = \frac{13\pi}{6}$ and solving for x, we have $x = \frac{13\pi}{12}$. Perhaps $\theta + 4\pi = \frac{\pi}{6} + 4\pi$ will also provide a basis for finding solutions for x. $\frac{\pi}{6} + 4\pi = \frac{\pi}{6} + \frac{24\pi}{6} = \frac{25\pi}{6}$. Setting $2x = \frac{25\pi}{6}$ and solving for x, we have $x = \frac{25\pi}{12}$. But $\frac{25\pi}{12} > \frac{24\pi}{12} = 2\pi$ is outside the interval $[0,2\pi)$. Regarding $\theta = \frac{7\pi}{6}$, set $2x = \theta$. Hence, $2x = \frac{7\pi}{6}$. Solving for x, we have $x = \frac{7\pi}{12}$. Perhaps $\theta + 2\pi = \frac{7\pi}{6} + 2\pi$ will also provide a basis for finding solutions for x. $\frac{7\pi}{6} + 2\pi = \frac{7\pi}{6} + \frac{12\pi}{6} = \frac{19\pi}{6}$. Setting $2x = \frac{19\pi}{6}$ and solving for x, we have $x = \frac{19\pi}{12}$. Perhaps $\theta + 4\pi = \frac{7\pi}{6} + 4\pi$ will also provide a basis for finding solutions for x. $\frac{7\pi}{6} + 4\pi = \frac{7\pi}{6} + \frac{24\pi}{6} = \frac{31\pi}{6}$. Setting $2x = \frac{31\pi}{6}$ and solving for x, we have $x = \frac{31\pi}{12}$. But $\frac{31\pi}{12} > \frac{24\pi}{12} = 2\pi$ is outside the interval $[0,2\pi)$. Therefore, the only solutions for x are $\frac{\pi}{12}, \frac{7\pi}{12}, \frac{13\pi}{12}, \frac{19\pi}{12}$ Check: $3 \tan \left(2 \cdot \frac{\pi}{12}\right) - \sqrt{3} = 3 \tan \left(\frac{\pi}{6}\right) - \sqrt{3} = 3 \frac{12}{\sqrt{3}} - \sqrt{3} = 3 \frac{12}{\sqrt{3}} - \sqrt{3} = \sqrt{3} - \sqrt{3} = 0.$ $3 \tan \left(2 \cdot \frac{7\pi}{12}\right) - \sqrt{3} = 3 \tan \left(\frac{7\pi}{6}\right) - \sqrt{3} = 3 \frac{1}{\sqrt{3}} - \sqrt{3} = \sqrt{3} - \sqrt{3} = 0.$ $3\tan\left(2\cdot\frac{13\pi}{12}\right) - \sqrt{3} = 3\tan\left(\frac{13\pi}{6}\right) - \sqrt{3} = 3\tan\left(\frac{\pi}{6}\right) - \sqrt{3} = 3\frac{1}{\sqrt{3}} - \sqrt{3} = \sqrt{3} - \sqrt{3} = 0.$ $3 \tan \left(2 \cdot \frac{19\pi}{12}\right) - \sqrt{3} = 3 \tan \left(\frac{19\pi}{6}\right) - \sqrt{3} = 3 \tan \left(\frac{7\pi}{6}\right) - \sqrt{3} = 3 \frac{1}{\sqrt{3}} - \sqrt{3} = \sqrt{3} - \sqrt{3} = 0.$ 4. $\tan^{2}\left(\frac{x}{3}\right) - 3 = 0 \implies \tan^{2}\left(\frac{x}{3}\right) = 3 \implies \tan\left(\frac{x}{3}\right) = \pm\sqrt{3} = \pm\frac{\sqrt{3}}{1}.$

According to WR no. 272, problem 19, $\tan(\theta) = \pm \frac{\sqrt{3}}{1}$ for $\theta = \frac{\pi}{3}$, $\theta = \frac{2\pi}{3}$, $\theta = \frac{4\pi}{3}$, and $\theta = \frac{5\pi}{3}$. Regarding $\theta = \frac{\pi}{3}$, set $\frac{x}{3} = \theta$. Hence, $\frac{x}{3} = \frac{\pi}{3}$. Solving for x, we have $x = \pi$.

Perhaps $\theta + 2\pi = \frac{\pi}{3} + 2\pi$ will also provide a basis for finding solutions for *x*. $\frac{\pi}{3} + 2\pi = \frac{\pi}{3} + \frac{6\pi}{3} = \frac{7\pi}{3}$. Setting $\frac{x}{3} = \frac{7\pi}{3}$ and solving for *x*, we have $x = 7\pi$. But $7\pi > 2\pi$ is outside the interval $[0,2\pi)$.

Regarding $\theta = \frac{2\pi}{3}$, set $\frac{x}{3} = \theta$. Hence, $\frac{x}{3} = \frac{2\pi}{3}$. Solving for x, we have $x = 2\pi$. But 2π is outside the interval $[0, 2\pi)$.

Regarding $\theta = \frac{4\pi}{3}$, set $\frac{x}{3} = \theta$. Hence, $\frac{x}{3} = \frac{4\pi}{3}$. Solving for *x*, we have $x = 4\pi$. But 4π is outside the interval $[0,2\pi)$.

Regarding $\theta = \frac{5\pi}{3}$, set $\frac{x}{3} = \theta$. Hence, $\frac{x}{3} = \frac{5\pi}{3}$. Solving for *x*, we have $x = 5\pi$. But 5π is outside the interval $[0,2\pi)$.

Therefore, the only solution for *x* is π .

Check:
$$\tan {2 \choose 3} - 3 = \left(\frac{\sqrt{3}}{1}\right)^2 - 3 = \left(\sqrt{3}\right)^2 - 3 = 3 - 3 = 0.$$

"Only he who never plays, never loses."