The allieekly itignr

12 Problems Solving Composite Trigonometric Equations (Type III)

(Part 2)

SELECTED SOLUTIONS

1. $3 \tan (2 x)-\sqrt{3}=0 \Rightarrow \tan (2 x)=\frac{\sqrt{3}}{3}=\frac{\sqrt{3}}{3} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{3}{3 \sqrt{3}}=\frac{1}{\sqrt{3}}$.

According to $W R$ no. 272, problem $1, \tan (\theta)=\frac{1}{\sqrt{3}}$ for $\theta=\frac{\pi}{6}$ and $\theta=\frac{7 \pi}{6}$.
Regarding $\theta=\frac{\pi}{6}$, set $2 x=\theta$. Hence, $2 x=\frac{\pi}{6}$. Solving for x, we have $x=\frac{\pi}{12}$.
Perhaps $\theta+2 \pi=\frac{\pi}{6}+2 \pi$ will also provide a basis for finding solutions for x.
$\frac{\pi}{6}+2 \pi=\frac{\pi}{6}+\frac{12 \pi}{6}=\frac{13 \pi}{6}$. Setting $2 x=\frac{13 \pi}{6}$ and solving for x, we have $x=\frac{13 \pi}{12}$.
Perhaps $\theta+4 \pi=\frac{\pi}{6}+4 \pi$ will also provide a basis for finding solutions for x.
$\frac{\pi}{6}+4 \pi=\frac{\pi}{6}+\frac{24 \pi}{6}=\frac{25 \pi}{6}$. Setting $2 x=\frac{25 \pi}{6}$ and solving for x, we have $x=\frac{25 \pi}{12}$.
But $\frac{25 \pi}{12}>\frac{24 \pi}{12}=2 \pi$ is outside the interval $[0,2 \pi)$.
Regarding $\theta=\frac{7 \pi}{6}$, set $2 x=\theta$. Hence, $2 x=\frac{7 \pi}{6}$. Solving for x, we have $x=\frac{7 \pi}{12}$.
Perhaps $\theta+2 \pi=\frac{7 \pi}{6}+2 \pi$ will also provide a basis for finding solutions for x.
$\frac{7 \pi}{6}+2 \pi=\frac{7 \pi}{6}+\frac{12 \pi}{6}=\frac{19 \pi}{6}$. Setting $2 x=\frac{19 \pi}{6}$ and solving for x, we have $x=\frac{19 \pi}{12}$.
Perhaps $\theta+4 \pi=\frac{7 \pi}{6}+4 \pi$ will also provide a basis for finding solutions for x.
$\frac{7 \pi}{6}+4 \pi=\frac{7 \pi}{6}+\frac{24 \pi}{6}=\frac{31 \pi}{6}$. Setting $2 x=\frac{31 \pi}{6}$ and solving for x, we have $x=\frac{31 \pi}{12}$.
But $\frac{31 \pi}{12}>\frac{24 \pi}{12}=2 \pi$ is outside the interval $[0,2 \pi)$.
Therefore, the only solutions for x are $\frac{\pi}{12}, \frac{7 \pi}{12}, \frac{13 \pi}{12}, \frac{19 \pi}{12}$.
Check: $3 \tan \left(2 \cdot \frac{\pi}{12}\right)-\sqrt{3}=3 \tan \left(\frac{\pi}{6}\right)-\sqrt{3}=3 \frac{1}{\sqrt{3}}-\sqrt{3}=\sqrt{3}-\sqrt{3}=0$.
$3 \tan \left(2 \cdot \frac{7 \pi}{12}\right)-\sqrt{3}=3 \tan \left(\frac{7 \pi}{6}\right)-\sqrt{3}=3 \frac{1}{\sqrt{3}}-\sqrt{3}=\sqrt{3}-\sqrt{3}=0$.
$3 \tan \left(2 \cdot \frac{13 \pi}{12}\right)-\sqrt{3}=3 \tan \left(\frac{13 \pi}{6}\right)-\sqrt{3}=3 \tan \left(\frac{\pi}{6}\right)-\sqrt{3}=3 \frac{1}{\sqrt{3}}-\sqrt{3}=\sqrt{3}-\sqrt{3}=0$.
$3 \tan \left(2 \cdot \frac{19 \pi}{12}\right)-\sqrt{3}=3 \tan \left(\frac{19 \pi}{6}\right)-\sqrt{3}=3 \tan \left(\frac{7 \pi}{6}\right)-\sqrt{3}=3 \frac{1}{\sqrt{3}}-\sqrt{3}=\sqrt{3}-\sqrt{3}=0$.
4. $\tan ^{2}\left(\frac{x}{3}\right)-3=0 \Rightarrow \tan ^{2}\left(\frac{x}{3}\right)=3 \Rightarrow \tan \left(\frac{x}{3}\right)= \pm \sqrt{3}= \pm \frac{\sqrt{3}}{1}$.

According to $W R$ no. 272, problem 19, $\tan (\theta)= \pm \frac{\sqrt{3}}{1}$ for $\theta=\frac{\pi}{3}, \theta=\frac{2 \pi}{3}, \theta=\frac{4 \pi}{3}$, and $\theta=\frac{5 \pi}{3}$.
Regarding $\theta=\frac{\pi}{3}$, set $\frac{x}{3}=\theta$. Hence, $\frac{x}{3}=\frac{\pi}{3}$. Solving for x, we have $x=\pi$.
Perhaps $\theta+2 \pi=\frac{\pi}{3}+2 \pi$ will also provide a basis for finding solutions for x.
$\frac{\pi}{3}+2 \pi=\frac{\pi}{3}+\frac{6 \pi}{3}=\frac{7 \pi}{3}$. Setting $\frac{x}{3}=\frac{7 \pi}{3}$ and solving for x, we have $x=7 \pi$.
But $7 \pi>2 \pi$ is outside the interval $[0,2 \pi)$.
Regarding $\theta=\frac{2 \pi}{3}$, set $\frac{x}{3}=\theta$. Hence, $\frac{x}{3}=\frac{2 \pi}{3}$. Solving for x, we have $x=2 \pi$.
But 2π is outside the interval $[0,2 \pi)$.
Regarding $\theta=\frac{4 \pi}{3}$, set $\frac{x}{3}=\theta$. Hence, $\frac{x}{3}=\frac{4 \pi}{3}$. Solving for x, we have $x=4 \pi$.
But 4π is outside the interval $[0,2 \pi)$.
Regarding $\theta=\frac{5 \pi}{3}$, set $\frac{x}{3}=\theta$. Hence, $\frac{x}{3}=\frac{5 \pi}{3}$. Solving for x, we have $x=5 \pi$.
But 5π is outside the interval $[0,2 \pi)$.
Therefore, the only solution for x is π.
Check: $\tan { }^{2}\left(\frac{\pi}{3}\right)-3=\left(\frac{\sqrt{3}}{1}\right)^{2}-3=(\sqrt{3})^{2}-3=3-3=0$.

