The Weekly Rigor

No. 281

"A mathematician is a machine for turning coffee into theorems."

November 9, 2019

12 Problems Solving Composite Trigonometric Equations (Type III) (Part 3)

5. $\tan(4x) - 1 = 0 \implies \tan(4x) = 1$. According to *WR* no. 273, problem 21, $\tan(\theta) = 1$ for $\theta = \frac{\pi}{4}$ and $\theta = \frac{5\pi}{4}$.

Regarding $\theta = \frac{\pi}{4}$, set $4x = \theta$. Hence, $4x = \frac{\pi}{4}$. Solving for *x*, we have $x = \frac{\pi}{16}$. Perhaps $\theta + 2\pi = \frac{\pi}{4} + 2\pi$ will also provide a basis for finding solutions for *x*. $\frac{\pi}{4} + 2\pi = \frac{\pi}{4} + \frac{3\pi}{4} = \frac{9\pi}{4}$. Setting $4x = \frac{9\pi}{4}$ and solving for *x*, we have $x = \frac{9\pi}{16}$. Perhaps $\theta + 4\pi = \frac{\pi}{4} + 4\pi$ will also provide a basis for finding solutions for *x*. $\frac{\pi}{4} + 4\pi = \frac{\pi}{4} + \frac{16\pi}{4} = \frac{17\pi}{4}$. Setting $4x = \frac{17\pi}{4}$ and solving for *x*, we have $x = \frac{17\pi}{16}$. Perhaps $\theta + 6\pi = \frac{\pi}{4} + \frac{6\pi}{4} = \frac{25\pi}{4}$. Setting $4x = \frac{25\pi}{4}$ and solving for *x*, we have $x = \frac{25\pi}{16}$. Perhaps $\theta + 8\pi = \frac{\pi}{4} + \frac{24\pi}{4} = \frac{25\pi}{4}$. Setting $4x = \frac{25\pi}{4}$ and solving for *x*, we have $x = \frac{25\pi}{16}$. Perhaps $\theta + 8\pi = \frac{\pi}{4} + 8\pi$ will also provide a basis for finding solutions for *x*. $\frac{\pi}{4} + 8\pi = \frac{\pi}{4} + \frac{32\pi}{4} = \frac{33\pi}{4}$. Setting $4x = \frac{33\pi}{4}$ and solving for *x*, we have $x = \frac{33\pi}{16}$. But $\frac{33\pi}{16} > \frac{32\pi}{16} = 2\pi$ is outside the interval $[0, 2\pi)$.

Regarding $\theta = \frac{5\pi}{4}$, set $4x = \theta$. Hence, $4x = \frac{5\pi}{4}$. Solving for *x*, we have $x = \frac{5\pi}{16}$. Perhaps $\theta + 2\pi = \frac{5\pi}{4} + 2\pi$ will also provide a basis for finding solutions for *x*. $\frac{5\pi}{4} + 2\pi = \frac{5\pi}{4} + \frac{8\pi}{4} = \frac{13\pi}{4}$. Setting $4x = \frac{13\pi}{4}$ and solving for *x*, we have $x = \frac{13\pi}{16}$. Perhaps $\theta + 4\pi = \frac{5\pi}{4} + 4\pi$ will also provide a basis for finding solutions for *x*. $\frac{5\pi}{4} + 4\pi = \frac{5\pi}{4} + \frac{16\pi}{4} = \frac{21\pi}{4}$. Setting $4x = \frac{21\pi}{4}$ and solving for *x*, we have $x = \frac{21\pi}{16}$. Perhaps $\theta + 6\pi = \frac{5\pi}{4} + 6\pi$ will also provide a basis for finding solutions for *x*. $\frac{5\pi}{4} + 6\pi = \frac{5\pi}{4} + \frac{24\pi}{4} = \frac{29\pi}{4}$. Setting $4x = \frac{29\pi}{4}$ and solving for *x*, we have $x = \frac{29\pi}{16}$. Perhaps $\theta + 8\pi = \frac{5\pi}{4} + \frac{24\pi}{4} = \frac{29\pi}{4}$. Setting $4x = \frac{29\pi}{4}$ and solving for *x*, we have $x = \frac{29\pi}{16}$. Perhaps $\theta + 8\pi = \frac{5\pi}{4} + \frac{32\pi}{4} = \frac{37\pi}{4}$. Setting $4x = \frac{37\pi}{4}$ and solving for *x*, we have $x = \frac{27\pi}{16}$. Perhaps $\theta + 8\pi = \frac{5\pi}{4} + \frac{32\pi}{4} = \frac{37\pi}{4}$. Setting $4x = \frac{37\pi}{4}$ and solving for *x*, we have $x = \frac{37\pi}{16}$. Perhaps $\theta + 8\pi = \frac{5\pi}{4} + \frac{32\pi}{4} = \frac{37\pi}{4}$. Setting $4x = \frac{37\pi}{4}$ and solving for *x*, we have $x = \frac{37\pi}{16}$.

Therefore, the only solutions for x are $\frac{\pi}{16}$, $\frac{5\pi}{16}$, $\frac{9\pi}{16}$, $\frac{13\pi}{16}$, $\frac{17\pi}{16}$, $\frac{21\pi}{16}$, $\frac{25\pi}{16}$, $\frac{29\pi}{16}$

Check:
$$\tan\left(4 \cdot \frac{\pi}{16}\right) - 1 = \tan\left(\frac{\pi}{4}\right) - 1 = 1 - 1 = 0$$
. \checkmark
 $\tan\left(4 \cdot \frac{5\pi}{16}\right) - 1 = \tan\left(\frac{5\pi}{4}\right) - 1 = 1 - 1 = 0$. \checkmark
 $\tan\left(4 \cdot \frac{9\pi}{16}\right) - 1 = \tan\left(\frac{9\pi}{4}\right) - 1 = \tan\left(\frac{\pi}{4}\right) - 1 = 1 - 1 = 0$. \checkmark
 $\tan\left(4 \cdot \frac{13\pi}{16}\right) - 1 = \tan\left(\frac{13\pi}{4}\right) - 1 = \tan\left(\frac{5\pi}{4}\right) - 1 = 1 - 1 = 0$. \checkmark
 $\tan\left(4 \cdot \frac{17\pi}{16}\right) - 1 = \tan\left(\frac{17\pi}{4}\right) - 1 = \tan\left(\frac{9\pi}{4}\right) - 1 = \tan\left(\frac{\pi}{4}\right) - 1 = 1 - 1 = 0$. \checkmark
 $\tan\left(4 \cdot \frac{21\pi}{16}\right) - 1 = \tan\left(\frac{21\pi}{4}\right) - 1 = \tan\left(\frac{13\pi}{4}\right) - 1 = \tan\left(\frac{5\pi}{4}\right) - 1 = 1 - 1 = 0$. \checkmark
 $\tan\left(4 \cdot \frac{25\pi}{16}\right) - 1 = \tan\left(\frac{25\pi}{4}\right) - 1 = \tan\left(\frac{17\pi}{4}\right) - 1 = \tan\left(\frac{9\pi}{4}\right) - 1 = 1 - 1 = 0$. \checkmark
 $\tan\left(4 \cdot \frac{29\pi}{16}\right) - 1 = \tan\left(\frac{29\pi}{4}\right) - 1 = \tan\left(\frac{21\pi}{4}\right) - 1 = \tan\left(\frac{13\pi}{4}\right) - 1 = 1 - 1 = 0$. \checkmark

10.
$$\cot^2\left(\frac{1}{2}x\right) - 3 = 0 \implies \cot^2\left(\frac{1}{2}x\right) = 3 \implies \frac{1}{\tan^2\left(\frac{1}{2}x\right)} = 3 \implies$$

 $\Rightarrow \tan^{2}\left(\frac{1}{2}x\right) = \frac{1}{3} \Rightarrow \tan\left(\frac{1}{2}x\right) = \pm \frac{1}{\sqrt{3}}. \text{ According to } WR \text{ no. 273, problem 26,} \\ \tan(\theta) = \pm \frac{1}{\sqrt{3}} \text{ for } \theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \text{ and } \frac{11\pi}{6}.$

Regarding $\theta = \frac{\pi}{6}$, set $\frac{1}{2}x = \theta$. Hence, $\frac{1}{2}x = \frac{\pi}{6}$. Solving for *x*, we have $x = \frac{\pi}{3}$. Perhaps $\theta + 2\pi = \frac{\pi}{6} + 2\pi$ will also provide a basis for finding solutions for *x*. $\frac{\pi}{6} + 2\pi = \frac{\pi}{6} + \frac{12\pi}{6} = \frac{13\pi}{6}$. Setting $\frac{1}{2}x = \frac{13\pi}{6}$ and solving for *x*, we have $x = \frac{13\pi}{3}$. But $\frac{13\pi}{3} > \frac{6\pi}{3} = 2\pi$ is outside the interval $[0, 2\pi)$.

Regarding $\theta = \frac{5\pi}{6}$, set $\frac{1}{2}x = \theta$. Hence, $\frac{1}{2}x = \frac{5\pi}{6}$. Solving for *x*, we have $x = \frac{5\pi}{3}$. Perhaps $\theta + 2\pi = \frac{5\pi}{6} + 2\pi$ will also provide a basis for finding solutions for *x*. $\frac{5\pi}{6} + 2\pi = \frac{5\pi}{6} + \frac{12\pi}{6} = \frac{17\pi}{6}$. Setting $\frac{1}{2}x = \frac{17\pi}{6}$ and solving for *x*, we have $x = \frac{17\pi}{3}$. But $\frac{17\pi}{3} > \frac{6\pi}{3} = 2\pi$ is outside the interval $[0, 2\pi)$.

Regarding $\theta = \frac{7\pi}{6}$, set $\frac{1}{2}x = \theta$. Hence, $\frac{1}{2}x = \frac{7\pi}{6}$. Solving for *x*, we have $x = \frac{7\pi}{3}$. But $\frac{7\pi}{3} > \frac{6\pi}{3} = 2\pi$ is outside the interval $[0, 2\pi)$.

Regarding $\theta = \frac{11\pi}{6}$, set $\frac{1}{2}x = \theta$. Hence, $\frac{1}{2}x = \frac{11\pi}{6}$. Solving for *x*, we have $x = \frac{11\pi}{3}$. But $\frac{11\pi}{3} > \frac{6\pi}{3} = 2\pi$ is outside the interval $[0, 2\pi)$.

Therefore, the only solutions for x are
$$\frac{\pi}{3}$$
, $\frac{5\pi}{3}$.
Check: $\cot^2\left(\frac{1}{2} \cdot \frac{\pi}{3}\right) - 3 = \cot^2\left(\frac{\pi}{6}\right) - 3 = \frac{1}{\tan^2\left(\frac{\pi}{6}\right)} - 3 = \left(\sqrt{3}\right)^2 - 3 = 3 - 3 = 0$. \checkmark
 $\cot^2\left(\frac{1}{2} \cdot \frac{5\pi}{3}\right) - 3 = \cot^2\left(\frac{5\pi}{6}\right) - 3 = \frac{1}{\tan^2\left(\frac{5\pi}{6}\right)} - 3 = \left(\sqrt{3}\right)^2 - 3 = 3 - 3 = 0$. \checkmark

"Only he who never plays, never loses."