The Weekly Rigor

No. 365

"A mathematician is a machine for turning coffee into theorems."

June 19, 2021

50 Word Problems Involving Rational Equations

(Part 15)

21.

	Distance	Rate	Time
1 st Car	700	x	700
			\overline{x}
2 nd Car	700	<i>x</i> - 30	700
			$\overline{x-30}$

Note that $\frac{700}{x} < \frac{700}{x-30}$.

 $\frac{700}{x} + 3 = \frac{700}{x - 30} \implies x^2 - 30x - 7000 = 0 \implies x = 100.$

: The 1st Car goes at 100 km/h. The 2nd Car goes at 70 km/h.

22.

	Distance	Rate	Time
John	330	x	330
			x
Bob	330	<i>x</i> + 5	330
			$\overline{x+5}$

To Bob takes more time than he otherwise would have, due to the flat tire.

Note that $\frac{330}{x} > \frac{330}{x+5}$. Furthermore, 30 minutes = $\frac{1}{2}$ hour.

 $\frac{330}{x} = \frac{330}{x+5} + \frac{1}{2} \implies x^2 + 5x - 3300 = 0 \implies x = 55.$

: John's speed is 55 km/h. Bob's speed is 60 km/h.

	Distance	Rate	Time
Run	2000	x	2000
			<u> </u>
Bike	2000	<i>x</i> + 4	2000
			$\overline{x+4}$

Note that $\frac{2000}{x+4} < \frac{2000}{x}$. Furthermore, 3 minutes 20 seconds = $3 \times 60 + 20 = 200$ seconds.

 $\frac{2000}{x+4} + 200 = \frac{2000}{x} \implies x^2 + 4x - 40 = 0 \implies x \cong 4.6.$

 \therefore David runs at about 4.6 m/s.

24.

	Distance	Rate	Time
Laney	80 <i>x</i>	80	x
Drew	100(x-1)	100	<i>x</i> – 1

The Note the phrase "one hour later," and hence Drew's time of x - 1 if x is Laney's time.

 $80x = 100(x - 1) \implies x = 5. \therefore 80(5) = 400 \text{ km}.$

25.

	Distance	Rate	Time
Car A (slower)	450	x	450
			x
Car B	600	x + 30	600
			$\overline{x+30}$

The While " = in the same time.

 $\frac{450}{x} = \frac{600}{x+30} \implies 450(x+30) = 600x \implies x = 90.$

: Car A travels at 90 km/h. Car B travels at 120 km/h.

"Only he who never plays, never loses."